C.D.S. - SIMBAD4 rel 1.7 - 2021.03.05CET12:20:34

2020A&A...634A..81B - Astronomy and Astrophysics, volume 634A, 81-81 (2020/2-1)

Deep learning for Sunyaev-Zel'dovich detection in Planck.


Abstract (from CDS):

The Planck collaboration has extensively used the six Planck HFI frequency maps to detect the Sunyaev-Zel'dovich (SZ) effect with dedicated methods, for example by applying (i) component separation to construct a full-sky map of the y parameter or (ii) matched multi-filters to detect galaxy clusters via their hot gas. Although powerful, these methods may still introduce biases in the detection of the sources or in the reconstruction of the SZ signal due to prior knowledge (e.g. the use of the generalised Navarro, Frenk, and White profile model as a proxy for the shape of galaxy clusters, which is accurate on average but not for individual clusters). In this study, we use deep learning algorithms, more specifically, a U-net architecture network, to detect the SZ signal from the Planck HFI frequency maps. The U-net shows very good performance, recovering the Planck clusters in a test area. In the full sky, Planck clusters are also recovered, together with more than 18000 other potential SZ sources for which we have statistical indications of galaxy cluster signatures, by stacking at their positions several full-sky maps at different wavelengths (i.e. the cosmic microwave background lensing map from Planck, maps of galaxy over-densities, and the ROSAT X-ray map). The diffuse SZ emission is also recovered around known large-scale structures such as Shapley, A399-A401, Coma, and Leo. Results shown in this proof-of-concept study are promising for potential future detection of galaxy clusters with low SZ pressure with this kind of approach, and more generally, for potential identification and characterisation of large-scale structures of the Universe via their hot gas.

Abstract Copyright: © V. Bonjean 2020

Journal keyword(s): methods: data analysis - large-scale structure of Universe - cosmology: observations

Simbad objects: 8

goto Full paper

goto View the reference in ADS

Number of rows : 8

N Identifier Otype ICRS (J2000)
ICRS (J2000)
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2021
1 NAME SGP reg 00 51 26.275 -27 07 41.70           ~ 519 0
2 ACO 399 ClG 02 57 56.4 +13 00 59           ~ 354 0
3 ACO 401 ClG 02 58 56.9 +13 34 56           ~ 525 0
4 NAME LEO SUPERCL SCG 11 06 +22.5           ~ 17 1
5 NAME COMA SUPERCL SCG 11 23 +23.9           ~ 241 0
6 NAME Leo Cluster ClG 11 30.0 +15 00           ~ 49 0
7 NAME SHAPLEY-CENTAURUS CL SCG 13 06.0 -33 04           ~ 517 0
8 NAME NEP reg 18 00 00.000 +66 33 38.55           ~ 267 0

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2020A&A...634A..81B and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact