2020A&A...642A.216S


Query : 2020A&A...642A.216S

2020A&A...642A.216S - Astronomy and Astrophysics, volume 642A, 216-216 (2020/10-1)

Probing the hidden atomic gas in Class I jets with SOFIA.

SPERLING T., EISLOFFEL J., FISCHER C., NISINI B., GIANNINI T. and KRABBE A.

Abstract (from CDS):


Context. We present SOFIA/FIFI-LS observations of five prototypical, low-mass Class I outflows (HH111, SVS13, HH26, HH34, HH30) in the far-infrared [OI]63µm and [OI]145µm transitions.
Aims. Spectroscopic [OI]63µm,145µm maps enable us to study the spatial extent of warm, low-excitation atomic gas within outflows driven by Class I protostars. These [OI] maps may potentially allow us to measure the mass-loss rates (Mjet) of this warm component of the atomic jet.
Methods. A fundamental tracer of warm (i.e. T∼500-1500K), low-excitation atomic gas is the [OI]63µm emission line, which is predicted to be the main coolant of dense dissociative J-type shocks caused by decelerated wind or jet shocks associated with protostellar outflows. Under these conditions, the [OI]63µm line can be directly connected to the instantaneous mass ejection rate. Thus, by utilising spectroscopic [OI]63µm maps, we wish to determine the atomic mass flux rate Mjet ejected from our target outflows.
Results. Strong [OI]63µm emission is detected at the driving sources HH111IRS, HH34IRS, SVS13, as well as at the bow shock region, HH7. The detection of the [OI]63µm line at HH26A and HH8/HH10 can be attributed to jet deflection regions. The far-infrared counterpart of the optical jet is detected in [OI]63µm only for HH111, but not for HH34. We interpret the [OI]63µm emission at HH111IRS, HH34IRS, and SVS13 to be coming primarily from a decelerated wind shock, whereas multiple internal shocks within the HH111 jet may cause most of the [OI]63µm emission seen there. At HH30, no [OI]63µm,145µm was detected. The [OI]145µm line detection is at noise level almost everywhere in our obtained maps. The observed outflow rates of our Class I sample are to the order of Mjet∼10–6M/yr, if proper shock conditions prevail. Independent calculations connecting the [OI]63µm line luminosity and observable jet parameters with the mass -loss rate are consistent with the applied shock model and lead to similar mass-loss rates. We discuss applicability and caveats of both methods.
Conclusions. High-quality spectroscopic [OI]63µm maps of protostellar outflows at the jet driving source potentially allow a clear determination of the mass ejection rate.

Abstract Copyright: © ESO 2020

Journal keyword(s): stars: formation - stars: mass-loss - ISM: jets and outflows - Herbig-Haro objects

VizieR on-line data: <Available at CDS (J/A+A/642/A216): table1.dat table2.dat list.dat fits/*>

Simbad objects: 39

goto Full paper

goto View the references in ADS

Number of rows : 39
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2022
#notes
1 HH 11 HH 03 29 03 +31 15.8           ~ 152 1
2 [RAC97] VLA 3 smm 03 29 03.372 +31 16 01.60           ~ 35 0
3 [RAC97] VLA 4b Rad 03 29 03.740 +31 16 04.15           ~ 25 0
4 V* V512 Per Or* 03 29 03.7578170808 +31 16 03.947525688           ~ 367 0
5 NAME HH 7-11 FIR 03 29 03.9 +31 16 06           ~ 343 0
6 2MASS J03290421+3116080 Y*O 03 29 04.21 +31 16 08.0           ~ 13 0
7 HH 10 HH 03 29 05.456 +31 15 45.32           ~ 139 1
8 ASR 6 Y*O 03 29 06.425 +31 15 34.86           ~ 155 1
9 HH 9 HH 03 29 06.5 +31 15 53           ~ 107 1
10 HH 7C HH 03 29 07.8 +31 15 26           ~ 7 0
11 HH 7B HH 03 29 08.11 +31 15 28.5           ~ 11 0
12 HH 7A HH 03 29 08.33 +31 15 29.1           ~ 13 0
13 2MASS J03290842+3115284 NIR 03 29 08.420 +31 15 28.48           ~ 226 1
14 NGC 1333 OpC 03 29 11 +31 18.6           ~ 1325 1
15 LDN 1450 DNe 03 29.6 +31 20           ~ 59 0
16 NAME Perseus Cloud SFR 03 35.0 +31 13           ~ 1210 0
17 LDN 1551 DNe 04 31 30.0 +18 12 30           ~ 790 1
18 V* V1213 Tau Or* 04 31 37.5055489536 +18 12 24.383952396           K7 540 0
19 LDN 1642 MoC 04 35 18 -14 13.9           ~ 144 0
20 NAME Taurus Complex SFR 04 41.0 +25 52           ~ 3926 0
21 2MASS J05352984-0626583 Y*O 05 35 29.8502549712 -06 26 58.334492688         18.18 ~ 96 0
22 HH 34 HH 05 35 31.30 -06 28 43.0     16     ~ 477 2
23 HH 34N HH 05 35 31.7 -06 24 26           ~ 34 0
24 NAME Ori A MoC 05 38 -07.1           ~ 2841 0
25 LDN 1641 MoC 05 39.0 -07 00           ~ 456 0
26 NAME Ori B MoC 05 41 43.0 -01 54 44           ~ 1266 0
27 LDN 1630 DNe 05 45.5 -00 59           ~ 369 0
28 HH 26B HH 05 46 01.6 -00 15 23           ~ 7 0
29 2MASS J05460363-0014493 Y*O 05 46 03.63 -00 14 49.3           ~ 54 0
30 HH 26A HH 05 46 05.0 -00 14 38           ~ 12 0
31 HH 26 HH 05 46 05.1 -00 14 17           ~ 98 1
32 NAME HH 24-26 MoC 05 46 07.34 -00 13 31.3           ~ 33 0
33 NAME HH 25MMS Y*O 05 46 07.8 -00 13 41           ~ 58 0
34 HGBS J054608.3-001044 Y*O 05 46 08.8 -00 10 47           ~ 90 0
35 HH 26C HH 05 46 08.9 -00 14 27           ~ 13 0
36 HH 111 HH 05 51 44.2 +02 48 34           ~ 397 0
37 LDN 1617 DNe 05 51 46 +02 48.5           ~ 58 0
38 HH 121 HH 05 51 46.2 +02 48 32           ~ 39 0
39 HGBS J055146.1+024829 Y*O 05 51 46.3 +02 48 28           ~ 81 0

To bookmark this query, right click on this link: simbad:objects in 2020A&A...642A.216S and select 'bookmark this link' or equivalent in the popup menu


2022.05.28-22:23:00

© Université de Strasbourg/CNRS

    • Contact