Query : 2020A&A...643A..97M

2020A&A...643A..97M - Astronomy and Astrophysics, volume 643A, 97-97 (2020/11-1)

WISE J044232.92+322734.9: A star-forming galaxy at redshift 1.1 seen through a Galactic dust clump?


Abstract (from CDS):

Context. Physically unassociated background or foreground objects seen towards submillimetre sources are potential contaminants of both the studies of young stellar objects embedded in Galactic dust clumps and multiwavelength counterparts of submillimetre galaxies (SMGs).
Aims. We aim to search for and characterise the properties of a potential extragalactic object seen in projection towards a Galactic dust clump.
Methods. We employed the near-infrared (3.4µm and 4.6µm) and mid-infrared (12µm and 22µm) data from the Wide-field Infrared Survey Explorer (WISE) and the submillimetre data from the Planck satellite.
Results. We uncovered a source, namely the WISE source J044232.92+322734.9 (hereafter J044232.92), which is detected in the W1-W3 bands of WISE, but undetected at 22µm (W4), and whose WISE infrared (IR) colours suggest that it is a star-forming galaxy (SFG). This source is seen in projection towards the Planck-detected dust clump PGCC G169.20-8.96, which likely belongs to the Taurus-Auriga cloud complex, at a distance of 140pc. We used the MAGPHYS+photo-z spectral energy distribution (SED) code to derive the photometric redshift and physical properties of J044232.92. The redshift was derived to be zphot=1.132–0.165+0.280, while, for example, the stellar mass, IR (8-1000µm) luminosity, and star formation rate were derived to be M*=4.6–2.5+4.7x1011M, LIR=2.8–1.5+5.7x1012L, and SFR=191–146+580M/yr (or 281–155+569M/yr when estimated from the IR luminosity). The derived value of LIR suggests that J044232.92 could be an ultraluminous IR galaxy, and we found that it is consistent with a main sequence SFG at a redshift of 1.132.
Conclusions. The estimated physical properties of J044232.92 are comparable to those of SMGs, except that the derived stellar mass of J044232.92 appears somewhat higher (by a factor of 4-5) than the average stellar masses of SMGs. However, the stellar mass difference could just reflect the poorly sampled SED in the ultraviolet, optical, and near-IR regimes. Indeed, the SED of J044232.92 could not be well constrained using the currently available data (WISE only), and hence the derived redshift of the source and its physical properties should be taken as preliminary estimates. Further observations, in particular high-resolution (sub-)millimetre and radio continuum imaging, are needed to better constrain the redshift and physical properties of J044232.92 and to see if the source really is a galaxy seen through a Galactic dust clump, in particular an SMG population member at z∼1.1.

Abstract Copyright: © ESO 2020

Journal keyword(s): ISM: clouds - galaxies: active - ISM: individual objects: PGCC G169.20-8.96 - infrared: galaxies - submillimeter: ISM - galaxies: individual: WISE J044232.92+322734.9

Simbad objects: 7

goto Full paper

goto View the references in ADS

Number of rows : 7
N Identifier Otype ICRS (J2000)
ICRS (J2000)
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2023
1 NAME Magellanic Clouds GrG 03 00 -71.0           ~ 6696 1
2 NAME Extended Chandra Deep Field South reg 03 32 30.0 -27 48 20           ~ 737 0
3 NAME Tau-Aur Complex SFR 04 30 +25.0           ~ 1329 0
4 NAME Taurus Complex SFR 04 41.0 +25 52           ~ 4177 0
5 WISE J044232.92+322734.9 G 04 42 32.9254 +32 27 34.917           ~ 1 0
6 PGCC G169.20-08.96 MoC 04 42 33.217 +32 27 36.81           ~ 2 0
7 NAME COSMOS Field reg 10 00 28.60 +02 12 21.0           ~ 2754 0

To bookmark this query, right click on this link: simbad:objects in 2020A&A...643A..97M and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact