2021A&A...647A..70H -
Astronomy and Astrophysics, volume 647A, 70-70 (2021/3-1)
Dynamical friction in Bose-Einstein condensed self-interacting dark matter at finite temperatures, and the Fornax dwarf spheroidal.
HARTMAN S.T.H., WINTHER H.A. and MOTA D.F.
Abstract (from CDS):
Aims. The aim of the present work is to better understand the gravitational drag forces, also referred to as dynamical friction, acting on massive objects moving through a self-interacting Bose-Einstein condensate, also known as a superfluid, at finite temperatures. This is relevant for models of dark matter consisting of light scalar particles with weak self-interactions that require nonzero temperatures, or that have been heated inside galaxies. Methods. We derived expressions for dynamical friction using linear perturbation theory, and compared these to numerical simulations in which nonlinear effects are included. After testing the linear result, it was applied to the Fornax dwarf spheroidal galaxy, and two of its gravitationally bound globular clusters. Dwarf spheroidals are well-suited for indirectly probing properties of dark matter, and so by estimating the rate at which these globular clusters are expected to sink into their host halo due to dynamical friction, we inferred limits on the superfluid dark matter parameter space. Results. The dynamical friction in a finite-temperature superfluid is found to behave very similarly to the zero-temperature limit, even when the thermal contributions are large. However, when a critical velocity for the superfluid flow is included, the friction force can transition from the zero-temperature value to the value in a conventional thermal fluid. Increasing the mass of the perturbing object induces a similar transition to when lowering the critical velocity. When applied to two of Fornax's globular clusters, we find that the parameter space preferred in the literature for a zero-temperature superfluid yields decay times that are in agreement with observations. However, the present work suggests that increasing the temperature, which is expected to change the preferred parameter space, may lead to very small decay times, and therefore pose a problem for finite-temperature superfluid models of dark matter.
(Ref) Object type as listed in the reference "Ref"
(acronym) Object type linked to the acronym according to the original reference
() Anterior to 2007, before we can link the objet type to a reference, or given by the CDS team in some particular cases
Syntax of coordinates is : "ra dec (wtype) [error ellipse] quality bibcode" :
ra dec : right ascension and declination (unit and frame defined according to your Output Options)
Grey values are increasing the original precision due to the computation of frame transformations
(wtype) : wavelength class for the origin of the coordinates (Rad, mm, IR, Optical, UV, Xray, Gam)
[error ellipse] : measurement uncertainty, on (ra,dec) if the positional angle is 90 degrees, on (majaxis,minaxis) otherwise (in mas at defined epoch in the original catalogue),
position angle (in degrees North celestial pole to East)
Syntax of coordinates is : "ra dec (wtype) [error ellipse] quality bibcode" :
ra dec : right ascension and declination (unit and frame defined according to your Output Options)
Grey values are increasing the original precision due to the computation of frame transformations
(wtype) : wavelength class for the origin of the coordinates (Rad, mm, IR, Optical, UV, Xray, Gam)
[error ellipse] : measurement uncertainty, on (ra,dec) if the positional angle is 90 degrees, on (majaxis,minaxis) otherwise (in mas at defined epoch in the original catalogue),
position angle (in degrees North celestial pole to East)
quality : flag of quality
E ≥ 10"
D : 1-10" (and some old data)
C : 0.1-1"
B : 0.01-0.1" + 2MASS, Tyc
A : VLBI, Hipparcos
bibcode : bibcode of the coordinates reference
FK4
coord.
(ep=B1950 eq=1950) :
02 37 55.0 -34 39 48
[
8000 8000 90
]
Syntax of coordinates is : "ra dec (wtype) [error ellipse] quality bibcode" :
ra dec : right ascension and declination (unit and frame defined according to your Output Options)
Grey values are increasing the original precision due to the computation of frame transformations
(wtype) : wavelength class for the origin of the coordinates (Rad, mm, IR, Optical, UV, Xray, Gam)
[error ellipse] : measurement uncertainty, on (ra,dec) if the positional angle is 90 degrees, on (majaxis,minaxis) otherwise (in mas at defined epoch in the original catalogue),
position angle (in degrees North celestial pole to East)
quality : flag of quality
E ≥ 10"
D : 1-10" (and some old data)
C : 0.1-1"
B : 0.01-0.1" + 2MASS, Tyc
A : VLBI, Hipparcos
bibcode : bibcode of the coordinates reference
Gal
coord.
(ep=J2000) :
237.1038 -65.6515
[
8000 8000 90
]
Syntax of proper motions is : "pm-ra pm-dec [error ellipse] quality bibcode"
pm-ra : mu-ra*cos(dec) (expressed in the ICRS system in mas/yr)
pm-dec : mu-dec (expressed in the ICRS system in mas/yr)
[error ellipse] : error major axis and minor axis (in mas), orientation angle (in deg)
quality : flag of quality (A=best quality -> E=worst quality, {� } =unknown quality)
Syntax of radial velocity (or/and redshift) is : "value [error] (wavelength) quality bibcode"
value : radial velocity or/and redshift (Heliocentric frame) according to your Output Options
(redshift may be not displayed if the data value is <0 and the database inside value is a radial velocity)
[error] : error of the corresponding value displayed before
(wavelength) : wavelength range of the measurement : Rad, mm, IR, Opt, UV, Xray, Gam or '∼'(unknown)
quality : flag of quality ( A=best quality -> E=worst quality, {� } =unknown quality)
References (1670 between 1850 and 2023) (Total 1670)
Simbad bibliographic survey began in 1850 for stars (at least bright stars) and in 1983 for all other objects (outside the solar system).
Follow
new references on this object
Annotations :
Annotations allow a user to add a note or report an error concerning the astronomical object and its data. It requires registration to post a note. See description . Please, have a look at Best practices. The list of all annotations to SIMBAD objects can be found here .
To bookmark this query, right click on this link: simbad:objects in 2021A&A...647A..70H and select 'bookmark this link' or equivalent in the popup menu