2021A&A...656A.157B


Query : 2021A&A...656A.157B

2021A&A...656A.157B - Astronomy and Astrophysics, volume 656A, 157-157 (2021/12-1)

Constraining stellar rotation and planetary atmospheric evolution of a dozen systems hosting sub-Neptunes and super-Earths.

BONFANTI A., FOSSATI L., KUBYSHKINA D. and CUBILLOS P.E.

Abstract (from CDS):


Context. Planetary atmospheric evolution modelling is a prime tool for understanding the observed exoplanet population and constraining formation and migration mechanisms, but it can also be used to study the evolution of the activity level of planet hosts.
Aims. We constrain the planetary atmospheric mass fraction at the time of the dispersal of the protoplanetary disk and the evolution of the stellar rotation rate for a dozen multi-planet systems that host sub-Neptunes and/or super-Earths.
Methods. We employ a custom-developed PYTHON code that we have dubbed PASTA (Planetary Atmospheres and Stellar RoTation RAtes), which runs within a Bayesian framework to model the atmospheric evolution of exoplanets. The code combines MESA stellar evolutionary tracks, a model describing planetary structures, a model relating stellar rotation and activity level, and a model predicting planetary atmospheric mass-loss rates based on the results of hydrodynamic simulations.
Results. Through a Markov chain Monte Carlo scheme, we retrieved the posterior probability density functions of all considered parameters. For ages older than about 2 Gyr, we find a median spin-down (i.e. P(t)∝ty) of y{bar} = 0.38–0.27+0.38, indicating a rotation decay slightly slower than classical literature values (≃0.5), though still within 1σ. At younger ages, we find a median spin-down (i.e. P(t)∝tx) of x{bar} = 0.26–0.19+0.42, which is below what is observed in young open clusters, though within 1σ. Furthermore, we find that the x probability distribution we derived is skewed towards lower spin-down rates. However, these two results are likely due to a selection bias as the systems suitable to be analysed by PASTA contain at least one planet with a hydrogen-dominated atmosphere, implying that the host star has more likely evolved as a slow rotator. We further look for correlations between the initial atmospheric mass fraction of the considered planets and system parameters (i.e. semi-major axis, stellar mass, and planetary mass) that would constrain planetary atmospheric accretion models, but without finding any.
Conclusions. PASTA has the potential to provide constraints to planetary atmospheric accretion models, particularly when considering warm sub-Neptunes that are less susceptible to mass loss compared to hotter and/or lower-mass planets. The TESS, CHEOPS, and PLATO missions are going to be instrumental in identifying and precisely measuring systems amenable to PASTA's analysis and can thus potentially constrain planet formation and stellar evolution.

Abstract Copyright: © ESO 2021

Journal keyword(s): planets and satellites: atmospheres - stars: activity - stars: rotation

Simbad objects: 48

goto Full paper

goto View the references in ADS

Number of rows : 48
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2023
#notes
1 HD 3167 PM* 00 34 57.5242131960 +04 22 53.284093032       8.4   K0V 70 0
2 HD 3167b Pl 00 34 57.5243837560 +04 22 53.283532424           ~ 52 0
3 HD 3167c Pl 00 34 57.5243837560 +04 22 53.283532424           ~ 47 0
4 CD-24 12581 PM* 16 10 17.6976776832 -24 59 25.260709632   12.22 11.28     ~ 32 0
5 CD-24 12581b Pl 16 10 17.6977179986 -24 59 25.258944730           ~ 29 0
6 CD-24 12581c Pl 16 10 17.6977179986 -24 59 25.258944730           ~ 24 0
7 K2-32 PM* 16 49 42.2601799152 -19 32 34.151379684   13.28 12.31 12.11   ~ 39 0
8 Kepler-25 Ro* 19 06 33.2141354736 +39 29 16.358725104   11.32 10.77 10.598   ~ 138 1
9 Kepler-25c Pl 19 06 33.2143323702 +39 29 16.357969502           ~ 77 1
10 Kepler-25b Pl 19 06 33.2143323702 +39 29 16.357969502           ~ 61 1
11 Kepler-411 Er* 19 10 25.3469947368 +49 31 23.712634632   13.70 12.55 12.26   K3V 74 0
12 Kepler-411c Pl 19 10 25.3471338464 +49 31 23.711931326           ~ 34 0
13 Kepler-411d Pl 19 10 25.3471338464 +49 31 23.711931326           ~ 23 0
14 Kepler-20 Ro* 19 10 47.5233433920 +42 20 19.301370684   13.41 12.51 12.70 11.64 G5V 151 1
15 Kepler-20c Pl 19 10 47.5234815840 +42 20 19.299357667           ~ 92 1
16 Kepler-20f Pl 19 10 47.5234815840 +42 20 19.299357667           ~ 58 1
17 Kepler-20e Pl 19 10 47.5234815840 +42 20 19.299357667           ~ 51 1
18 Kepler-20d Pl 19 10 47.5234815840 +42 20 19.299357667           ~ 69 1
19 Kepler-36 Ro* 19 25 00.0428079600 +49 13 54.630900876   12.66 11.94     ~ 204 1
20 Kepler-36b Pl 19 25 00.0430855076 +49 13 54.631289830           ~ 140 1
21 Kepler-36c Pl 19 25 00.0430855076 +49 13 54.631289830           ~ 115 1
22 Kepler-11 Ro* 19 48 27.6226218768 +41 54 32.903163504       14.00   G2V 332 1
23 Kepler-11e Pl 19 48 27.6228219845 +41 54 32.902654079           ~ 116 1
24 Kepler-11b Pl 19 48 27.6228219845 +41 54 32.902654079           ~ 141 1
25 Kepler-11c Pl 19 48 27.6228219845 +41 54 32.902654079           ~ 104 1
26 Kepler-11d Pl 19 48 27.6228219845 +41 54 32.902654079           ~ 114 1
27 Kepler-11g Pl 19 48 27.6228219845 +41 54 32.902654079           ~ 74 1
28 Kepler-11f Pl 19 48 27.6228219845 +41 54 32.902654079           ~ 125 1
29 Kepler-89 Ro* 19 49 19.9343204784 +41 53 28.006017936           ~ 134 1
30 Kepler-89d Pl 19 49 19.9344504805 +41 53 28.005888625           ~ 76 1
31 Kepler-89c Pl 19 49 19.9344504805 +41 53 28.005888625           ~ 53 1
32 Kepler-89e Pl 19 49 19.9344504805 +41 53 28.005888625           ~ 57 1
33 Kepler-18b Pl 19 52 19.0688249829 +44 44 46.807526602           ~ 71 1
34 Kepler-18c Pl 19 52 19.0688249829 +44 44 46.807526602           ~ 70 1
35 Kepler-18d Pl 19 52 19.0688249829 +44 44 46.807526602           ~ 74 1
36 Kepler-18 Ro* 19 52 19.0688312520 +44 44 46.807928916       13.93   ~ 114 1
37 Kepler-48b Pl 19 56 33.4161532347 +40 56 56.496048906           ~ 51 1
38 Kepler-48c Pl 19 56 33.4161532347 +40 56 56.496048906           ~ 62 1
39 Kepler-48d Pl 19 56 33.4161532347 +40 56 56.496048906           ~ 44 0
40 Kepler-48 Ro* 19 56 33.4161659688 +40 56 56.496876216           K0V 92 1
41 WASP-47 * 22 04 48.7261549272 -12 01 07.998743676     11.99 11.82   ~ 140 1
42 WASP-47e Pl 22 04 48.7262032385 -12 01 08.000987005           ~ 59 0
43 WASP-47d Pl 22 04 48.7262032385 -12 01 08.000987005           ~ 40 0
44 K2-285 * 23 17 32.2274265744 +01 18 01.074749508   12.87 11.75 11.88   ~ 6 0
45 K2-285b Pl 23 17 32.2274677655 +01 18 01.072997430           ~ 8 0
46 K2-285c Pl 23 17 32.2274677655 +01 18 01.072997430           ~ 10 0
47 K2-285d Pl 23 17 32.2274677655 +01 18 01.072997430           ~ 4 0
48 K2-285e Pl 23 17 32.2274677655 +01 18 01.072997430           ~ 4 0

To bookmark this query, right click on this link: simbad:objects in 2021A&A...656A.157B and select 'bookmark this link' or equivalent in the popup menu


2023.01.31-02:37:21

© Université de Strasbourg/CNRS

    • Contact