2022A&A...657A..73P -
Astronomy and Astrophysics, volume 657A, 73-73 (2022/1-1)
Spheroidal magnetic stars rotating in vacuum.
PETRI J.
Abstract (from CDS):
Context. Gravity shapes stars to become almost spherical because of the isotropic nature of gravitational attraction in Newton's theory. However, several mechanisms break this isotropy, such as their rotation generating a centrifugal force, magnetic pressure, or anisotropic equations of state. The stellar surface therefore slightly or significantly deviates from a sphere depending on the strength of these anisotropic perturbations. Aims. In this paper, we compute analytical and numerical solutions of the electromagnetic field produced by a rotating spheroidal star of oblate or prolate nature. This study is particularly relevant for millisecond pulsars for which strong deformations are produced by rotation or a strong magnetic field, leading to indirect observational signatures of the polar cap thermal X-ray emission. Methods. First we solve the time harmonic Maxwell equations in vacuum by using oblate and prolate spheroidal coordinates adapted to the stellar boundary conditions. The solutions are expanded in series of radial and angular spheroidal wave functions. Particular emphasis is put on the magnetic dipole radiation. Second, we compute approximate solutions by integrating the time-dependent Maxwell equations in spheroidal coordinates numerically. Results. We show that the spin-down luminosity corrections compared to a perfect sphere are, to leading order, given by terms involving (a/rL)2 and (a/R)2 where a is the stellar oblateness or prolateness, R the smallest star radius, and rL the light-cylinder radius. The corresponding perturbations in the electromagnetic field are only perceptible close to the surface, deforming the polar cap rims. At large distances r ≫ a, the solution tends asymptotically to the perfect spherical case of a rotating dipole.
(Ref) Object type as listed in the reference "Ref"
(acronym) Object type linked to the acronym according to the original reference
() Anterior to 2007, before we can link the objet type to a reference, or given by the CDS team in some particular cases
Syntax of coordinates is : "ra dec (wtype) [error ellipse] quality bibcode" :
ra dec : right ascension and declination (unit and frame defined according to your Output Options)
Grey values are increasing the original precision due to the computation of frame transformations
(wtype) : wavelength class for the origin of the coordinates (Rad, mm, IR, Optical, UV, Xray, Gam)
[error ellipse] : measurement uncertainty, on (ra,dec) if the positional angle is 90 degrees, on (majaxis,minaxis) otherwise (in mas at defined epoch in the original catalogue),
position angle (in degrees North celestial pole to East)
Syntax of coordinates is : "ra dec (wtype) [error ellipse] quality bibcode" :
ra dec : right ascension and declination (unit and frame defined according to your Output Options)
Grey values are increasing the original precision due to the computation of frame transformations
(wtype) : wavelength class for the origin of the coordinates (Rad, mm, IR, Optical, UV, Xray, Gam)
[error ellipse] : measurement uncertainty, on (ra,dec) if the positional angle is 90 degrees, on (majaxis,minaxis) otherwise (in mas at defined epoch in the original catalogue),
position angle (in degrees North celestial pole to East)
quality : flag of quality
E ≥ 10"
D : 1-10" (and some old data)
C : 0.1-1"
B : 0.01-0.1" + 2MASS, Tyc
A : VLBI, Hipparcos
bibcode : bibcode of the coordinates reference
FK4
coord.
(ep=B1950 eq=1950) :
00 26 15.68 +59 17 44.3
[
]
Syntax of coordinates is : "ra dec (wtype) [error ellipse] quality bibcode" :
ra dec : right ascension and declination (unit and frame defined according to your Output Options)
Grey values are increasing the original precision due to the computation of frame transformations
(wtype) : wavelength class for the origin of the coordinates (Rad, mm, IR, Optical, UV, Xray, Gam)
[error ellipse] : measurement uncertainty, on (ra,dec) if the positional angle is 90 degrees, on (majaxis,minaxis) otherwise (in mas at defined epoch in the original catalogue),
position angle (in degrees North celestial pole to East)
quality : flag of quality
E ≥ 10"
D : 1-10" (and some old data)
C : 0.1-1"
B : 0.01-0.1" + 2MASS, Tyc
A : VLBI, Hipparcos
bibcode : bibcode of the coordinates reference
Gal
coord.
(ep=J2000) :
120.09642 -03.17650
[
]
', {sourceSize:12, color:'#30a090'})); aladin.on('objectClicked', function(object) { var objName=object.data.MAIN_ID; aladin.showPopup(object.ra,object.dec,'',''+ objName+''); });" title="Show Simbad objects">
Overlay
points in this preview
All
(CDSPortal)
Send to
Some important notes on this object about identifications and objects associations.
notes:
Millisecond pulsar
The link on the acronym of the identifiers give access to the
information for this acronym in the dictionary of nomenclature.
Identifiers (4) :
An access of full data is available using the icon Vizier near the identifier of the catalogue
References (255 between 1850 and 2023) (Total 255)
Simbad bibliographic survey began in 1850 for stars (at least bright stars) and in 1983 for all other objects (outside the solar system).
Follow
new references on this object
Annotations :
Annotations allow a user to add a note or report an error concerning the astronomical object and its data. It requires registration to post a note. See description . Please, have a look at Best practices. The list of all annotations to SIMBAD objects can be found here .
To bookmark this query, right click on this link: simbad:objects in 2022A&A...657A..73P and select 'bookmark this link' or equivalent in the popup menu