2022A&A...659A..66K


Query : 2022A&A...659A..66K

2022A&A...659A..66K - Astronomy and Astrophysics, volume 659A, 66-66 (2022/3-1)

Exploring X-ray variability with unsupervised machine learning. I. Self-organizing maps applied to XMM-Newton data.

KOVACEVIC M., PASQUATO M., MARELLI M., DE LUCA A., SALVATERRA R. and BELFIORE A.

Abstract (from CDS):

Context. XMM-Newton provides unprecedented insight into the X-ray Universe, recording variability information for hundreds of thousands of sources. Manually searching for interesting patterns in light curves is impractical, requiring an automated data-mining approach for the characterization of sources. Aims. Straightforward fitting of temporal models to light curves is not a sure way to identify them, especially with noisy data. We used unsupervised machine learning to distill a large data set of light-curve parameters, revealing its clustering structure in preparation for anomaly detection and subsequent searches for specific source behaviors (e.g., flares, eclipses). Methods. Self-organizing maps (SOMs) achieve dimensionality reduction and clustering within a single framework. They are a type of artificial neural network trained to approximate the data with a two-dimensional grid of discrete interconnected units, which can later be visualized on the plane. We trained our SOM on temporal-only parameters computed from 105 detections from the Exploring the X-ray Transient and variable Sky catalog. Results. The resulting map reveals that the ≃2500 most variable sources are clustered based on temporal characteristics. We find distinctive regions of the SOM map associated with flares, eclipses, dips, linear light curves, and others. Each group contains sources that appear similar by eye. We single out a handful of interesting sources for further study. Conclusions. The condensed view of our dataset provided by SOMs allowed us to identify groups of similar sources, speeding up manual characterization by orders of magnitude. Our method also highlights problems with fitting simple temporal models to light curves and can be used to mitigate them to an extent. This will be crucial for fully exploiting the high data volume expected from upcoming X-ray surveys, and may also help with interpreting supervised classification models.

Abstract Copyright: © ESO 2022

Journal keyword(s): methods: statistical - methods: miscellaneous - catalogs - astronomical databases: miscellaneous - X-rays: general - methods: data analysis

Status at CDS : Objects in title, abstract, text, figures, and all or part of small table(s) being processed in SIMBAD.

Simbad objects: 20

goto Full paper

goto View the references in ADS

Number of rows : 20
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2023
#notes
1 3XMM J004232.1+411314 X 00 42 32.072 +41 13 14.33           ~ 4 0
2 RX J004717.4-251811 X 00 47 17.75 -25 18 07.5           ~ 9 0
3 V* XY Ari CV* 02 56 08.185 +19 26 34.12           ~ 153 1
4 2E 756 ULX 03 18 22.00 -66 36 04.3   23.5 23.6     O9.5 233 3
5 OGLE LMC-SC20 113500 EB* 05 46 46.54 -71 08 53.9     19.163   18.886 ~ 252 0
6 XMMSL1 J063045.9-603110 No* 06 30 45.420 -60 31 12.54           ~ 7 0
7 HD 47179 * 06 37 36.4834083072 +05 39 32.443929108   8.99 8.51     F7IV 17 0
8 2MASS J08094536-4721101 Y*? 08 09 45.3650599128 -47 21 10.119123756   19.45 18.14   14.97 M4Ve 12 0
9 [SST2011] J081929.00+704219.3 ULX 08 19 28.99 +70 42 19.4           ~ 187 2
10 2XMM J125048.6+410743 ULX 12 50 48.6 +41 07 43           ~ 7 0
11 2XMM J131223.4+173659 CV* 13 12 23.4769193064 +17 36 59.185421388           ~ 15 0
12 4U 1323-62 LXB 13 26 37.0 -62 08 09           ~ 176 0
13 RX J133001+47137 UX? 13 30 01.01 +47 13 43.9           ~ 81 0
14 2XMM J134736.4+173404 Sy2 13 47 36.3997510944 +17 34 04.578759300           ~ 26 0
15 CXOU J141312.3-652013 CV* 14 13 11.9622141349 -65 20 13.883379597           ~ 25 0
16 [KRL2007b] 225 LXB 17 10 12.3 -28 07 54           ~ 86 0
17 [SKM2002] 27 LXB 17 45 35.65 -29 01 34.0           ~ 176 1
18 V* V2301 Oph CV* 18 00 35.5317201576 +08 10 13.920836628           ~ 99 0
19 V* EP Dra CV* 19 07 06.1869434379 +69 08 43.874477499   18       ~ 64 0
20 V* V1727 Cyg LXB 21 31 26.2133156448 +47 17 24.512055396 16.75 17.05 16.4     ~ 238 0

To bookmark this query, right click on this link: simbad:objects in 2022A&A...659A..66K and select 'bookmark this link' or equivalent in the popup menu


2023.09.23-00:34:58

© Université de Strasbourg/CNRS

    • Contact