2023A&A...671A..96M


Query : 2023A&A...671A..96M

2023A&A...671A..96M - Astronomy and Astrophysics, volume 671A, 96 (2023/3-1)

The VLT/SPHERE view of the ATOMIUM cool evolved star sample I. Overview: Sample characterization through polarization analysis.

MONTARGES M., CANNON E., DE KOTER A., KHOURI T., LAGADEC E., KERVELLA P., DECIN L., McDONALD I., HOMAN W., WATERS L.B.F.M., SAHAI R., GOTTLIEB C.A., MALFAIT J., MAES S., PIMPANUWAT B., JESTE M., DANILOVICH T., DE CEUSTER F., VAN DE SANDE M., GOBRECHT D., WALLSTROM S.H.J., WONG K.T., EL MELLAH I., BOLTE J., HERPIN F., RICHARDS A.M.S., BAUDRY A., ETOKA S., GRAY M.D., MILLAR T.J., MENTEN K.M., MULLER H.S.P., PLANE J.M.C., YATES J. and ZIJLSTRA A.

Abstract (from CDS):

Context. Low- and intermediate-mass asymptotic giant stars and massive red supergiant stars are important contributors to the chemical enrichment of the Universe. They are among the most efficient dust factories of the Galaxy, harboring chemically rich circumstellar environments. Yet, the processes that lead to dust formation or the large-scale shaping of the mass loss still escape attempts at modeling.
Aims. Through the ATOMIUM project, we aim to present a consistent view of a sample of 17 nearby cool evolved stars. Our goals are to unveil the dust-nucleation sites and morphologies of the circumstellar envelope of such stars and to probe ambient environments with various conditions. This will further enhance our understanding of the roles of stellar convection and pulsations, and that of companions in shaping the dusty circumstellar medium.
Methods. Here we present and analyze VLT/SPHERE-ZIMPOL polarimetric maps obtained in the visible (645-820 nm) of 14 out of the 17 ATOMIUM sources. They were obtained contemporaneously with the ALMA high spatial resolution data. To help interpret the polarized signal, we produced synthetic maps of light scattering by dust, through 3D radiative transfer simulations with the RADMC3D code.
Results. The degree of linear polarization (DoLP) observed by ZIMPOL spreads across several optical filters. We infer that it primarily probes dust located just outside of the point spread function of the central source, and in or near the plane of the sky. The polarized signal is mainly produced by structures with a total optical depth close to unity in the line of sight, and it represents only a fraction of the total circumstellar dust. The maximum DoLP ranges from 0.03-0.38 depending on the source, fractions that can be reproduced by our 3D pilot models for grains composed of olivine, melilite, corundum, enstatite, or forsterite. The spatial structure of the DoLP shows a diverse set of shapes, including clumps, arcs, and full envelopes. Only for three sources do we note a correlation between the ALMA CO υ = 0, J = 2-1 and SiO υ = 0, J = 5-4 lines, which trace the gas density, and the DoLP, which traces the dust.
Conclusions. The clumpiness of the DoLP and the lack of a consistent correlation between the gas and the dust location show that, in the inner environment, dust formation occurs at very specific sites. This has potential consequences for the derived mass-loss rates and dust-to-gas ratio in the inner region of the circumstellar environment. Except for π1 Gru and perhaps GY Aql, we do not detect interactions between the circumstellar wind and the hypothesized companions that shape the wind at larger scales. This suggests that the orbits of any other companions are tilted out of the plane of the sky.

Abstract Copyright: © The Authors 2023

Journal keyword(s): stars: AGB and post-AGB - supergiants - stars: mass-loss - stars: imaging - circumstellar matter - stars: evolution

VizieR on-line data: <Available at CDS (J/A+A/671/A96): stars.dat list.dat fits/*>

Status at CDS : Tables of objects will be appraised for possible ingestion in SIMBAD.

Simbad objects: 40

goto Full paper

goto View the references in ADS

Number of rows : 40
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 IRC +10011 OH* 01 06 25.9879717848 +12 35 52.896392052   20.7   18.26 14.01 M8 420 0
2 * omi Cet Mi* 02 19 20.79210 -02 58 39.4956   7.63 6.53 5.03   M5-9IIIe+DA 1528 0
3 V* IK Tau OH* 03 53 28.8924743304 +11 24 21.895183368 16.99 14.463 16.171 14.101   M7-11 640 0
4 V* R Dor AB* 04 36 45.59127 -62 04 37.7974 7.84 6.98 5.40 2.71 -0.44 M8III:e 346 0
5 * alf Ori s*r 05 55 10.30536 +07 24 25.4304 4.38 2.27 0.42 -1.17 -2.45 M1-M2Ia-Iab 1673 0
6 * L02 Pup AB* 07 13 32.3185436236 -44 38 22.951891964 7.90 6.66 5.10 2.49 0.07 M5IIIe 219 0
7 NAME Puppis reg 07 40 -28.0           ~ 95 0
8 V* R Hya Mi* 13 29 42.7801586466 -23 16 52.751628992 7.26 6.58 4.97 2.27 -0.15 M6-9e 488 0
9 V* W Hya Mi* 13 49 02.0018313132 -28 22 03.532006894   8.97 7.70     M7.5-9e 640 0
10 HD 121758 * 13 57 58.8757740432 -25 59 53.090615544   7.71 6.42     K1III 13 0
11 V* U Her OH* 16 25 47.4719383584 +18 53 32.863368084 8.85 8.23 6.70     M6.5-8+e 541 1
12 * alf Sco s*r 16 29 24.45970 -26 25 55.2094 4.08 2.75 0.91 -0.64 -1.87 M1.5Iab+B2Vn 746 0
13 HD 152473 * 16 54 46.3030591776 -30 58 47.116753788   8.64 7.49     K1IIICNII 5 0
14 HD 153898 * 17 01 38.0540466744 +15 04 34.390687800   9.77 8.68     K0III 15 0
15 V* AH Sco s*r 17 11 17.0194487616 -32 19 30.714035556   10.03 8.10     M5Ia-Iab 137 0
16 V* RW Sco OH* 17 14 51.6789006720 -33 25 54.539038236     11.06 10.07 8.71 M6e 74 0
17 V* KW Sgr s*r 17 52 00.7269495408 -28 01 20.555654448   11.45 11.00     M3Ia 90 0
18 HD 163105 PM* 17 55 34.4479353264 -28 11 08.014981524   10.26 9.200     K1/2(III) 10 0
19 V* VX Sgr s*r 18 08 04.0442790744 -22 13 26.600899044 11.72 9.41 6.52 3.90 2.11 M8.5Ia 596 0
20 HD 166031 * 18 09 41.2361577168 -20 49 52.680347976   10.536 9.426     K0III 8 0
21 HD 174350 * 18 49 50.4309849120 +06 51 49.155424992   9.06 7.90     K2III 22 0
22 V* R Aql OH* 19 06 22.2510922392 +08 13 48.012661776 8.06 7.69 6.09     M6.5-9e 564 2
23 V* W Aql S* 19 15 23.3572741560 -07 02 50.333886492   12.72 10.14 10.21   S6/6e 231 0
24 HD 180459 * 19 17 10.0704307992 -12 37 24.767747544   11.20 10.01     K0III 5 0
25 HD 184413 * 19 34 51.8949482472 -16 07 16.771455336   11.24 10.03     K1(III) 4 0
26 V* GY Aql Mi* 19 50 06.3301987896 -07 36 52.465065516   12.54 11.22     M8 119 0
27 HD 187807 * 19 54 54.6867734928 -57 34 01.105593060   9.07 7.98     K1III 16 0
28 V* S Pav Mi* 19 55 13.9680387696 -59 11 44.333160288   9.25 8.21     M8III 91 0
29 IRC -10529 OH* 20 10 27.8731455576 -06 16 13.758742596         15.49 M: 142 0
30 HD 193244 * 20 20 14.7613897152 -29 07 51.736854720   8.91 7.72     K1III 10 0
31 V* T Mic AB* 20 27 55.1897976672 -28 15 39.797839548   8.33 6.74     M7/8III 95 0
32 HD 195835 * 20 32 51.1714494912 +27 12 43.786791036   7.97 6.88     K0II 16 0
33 V* U Del LP* 20 45 28.2357324504 +18 05 24.138355308 9.30 8.06 6.38     M4-6II-III 128 0
34 HD 201298 * 21 08 28.1388540072 +06 59 21.694762644   7.87 6.18     K5III 30 0
35 * pi.01 Gru S* 22 22 44.2083897000 -45 56 52.791160956 10.52 8.62 6.55 3.19 0.52 S5,7: 194 0
36 HD 214987 V* 22 42 43.0816800432 -44 14 52.882380132   7.044 6.067     K0III 36 0
37 HD 216556 * 22 54 11.7385025064 -30 33 26.245129464   9.36 8.40     K0III 4 0
38 V* V PsA AB* 22 55 19.6832667720 -29 36 44.521985340   10.18 9.30     M7/8III 53 0
39 V* SV Aqr LP* 23 22 45.3630843744 -10 49 00.064750908   10.91 9.83     M8 37 0
40 HD 220340 * 23 22 59.8331200440 -13 29 22.279860672   10.540 9.42     K0III 8 0

To bookmark this query, right click on this link: simbad:objects in 2023A&A...671A..96M and select 'bookmark this link' or equivalent in the popup menu