1999A&A...349..887L


Query : 1999A&A...349..887L

1999A&A...349..887L - Astronomy and Astrophysics, volume 349, 887-897 (1999/9-3)

Orbital period modulation and quadrupole moment changes in magnetically active close binaries.

LANZA A.F. and RODONO M.

Abstract (from CDS):

We discuss the main characteristics of the orbital period modulation in close binaries with late-type components. We focus on the various physical scenarios proposed to explain this phenomenon and, in particular, Hall's (1989SSRv...50..219H) suggestion that it may be connected with magnetic activity. Starting from the work of Applegate (1992ApJ...385..621A) and Lanza et al. (1998MNRAS.296..893L), we develop an integral approach to evaluate the gravitational quadrupole moment of an active star and its variations, which we consider to be an important driver of the observed orbital period changes. The method applies the tensor virial theorem after Chandrasekhar (1961, Hydrodynamic and hydromagnetic stability) and directly relates the variation of the quadrupole moment with the changes of kinetic and magnetic energy of the stellar hydromagnetic dynamo. Particular effort has been applied in minimizing the number of free parameters entering the problem. A sample of 46 close binaries with period changes of alternate signs has been studied by our method. The amplitude of the quadrupole moment change appears to decrease with increasing angular velocity, implying that the time-variable part of the kinetic energy of rotation varies as δT/T∝Ω–0.93±0.10, with a correlation coefficient of 0.83. The length of the cycle of the orbital period modulation seems to be correlated with the angular velocity as Pmod∝Ω–0.36±0.10, but with a smaller correlation coefficient of 0.62. These results support the suggestion that a distributed non-linear dynamo is at work in the convective envelopes of very active stars and that it strongly affects the differential rotation. We also discuss the energy budget of the process responsible for the quadrupole moment variation and find that, on average, only ∼10% of the energy required to maintain the differential rotation may be lost by dissipation in the turbulent convective envelope during a cycle of the orbital period change. The problems of the magnetic field geometry and stability and the relationship between the length of the activity cycle, as determined by the change of the area of the starspots and the orbital period modulation, respectively, are also addressed.

Abstract Copyright:

Journal keyword(s): stars: binaries: close - stars: activity - stars: late-type - magnetic fields

Simbad objects: 51

goto View the references in ADS

Number of rows : 51
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 V* TV Cas EB* 00 19 18.7425324624 +59 08 20.546623392 7.27 7.29 7.22     B9V 271 0
2 V* U Cep EB* 01 02 18.4439850768 +81 52 32.081564352   6.92 6.92     G2III:+B8/9 467 0
3 V* XZ And EB* 01 56 51.5241237096 +42 06 02.181375288   10.16 9.93     A4IV 128 0
4 V* X Tri EB* 02 00 33.7371929520 +27 53 19.206276360   9.30 9.00 8.50   A7V 225 0
5 V* SS Ari EB* 02 04 18.4072364136 +24 00 02.294819532   11.00 10.15 9.991 9.644 G0 113 0
6 HD 13078 EB* 02 09 03.4212807096 +40 47 39.167158668   9.41 8.98     F2Vv 133 0
7 V* RW Tri CV* 02 25 36.1556820000 +28 05 50.891220600   13.50 12.50     M0V 311 0
8 V* RZ Cas EB* 02 48 55.5102370536 +69 38 03.441502644   6.40 6.26     A3V 456 0
9 * bet Per EB* 03 08 10.1324535 +40 57 20.328013 1.70 2.07 2.12 2.08 2.11 B8V 1219 1
10 V* RT Per EB* 03 23 40.3991164752 +46 34 35.840479296   11.22 10.73     F5+G0 163 0
11 HD 22468 RS* 03 36 47.2904292073 +00 35 15.943692002 7.09 6.79 5.90     K2:Vnk 1167 0
12 V* V471 Tau EB* 03 50 24.9666549840 +17 14 47.430910716   10.258 9.373   8.393 K2V+DA 667 0
13 V* RW Tau Be* 04 03 54.3161404416 +28 07 33.494136636   8.130 8.08 8.76   B8Ve+K0IV 263 0
14 V* YY Eri EB* 04 12 08.8493445840 -10 28 09.993826452   9.08 8.41   7.673 G3V 221 0
15 V* T Aur No* 05 31 59.1180488976 +30 26 45.034081044           ~ 276 0
16 V* SV Cam EB* 06 41 19.0827100176 +82 16 02.435351448       9.0   G2IV-V 360 0
17 V* SS Cam RS* 07 16 24.7384875624 +73 19 56.913187584   11.01 10.20     G1+F5e 109 0
18 V* U Gem CV* 07 55 05.2323858391 +22 00 05.045435077   15.3 14.54     DA 1101 0
19 V* Z Cha CV* 08 07 27.7517751528 -76 32 00.665029356           M5.5 605 1
20 V* SW Lyn EB* 08 07 41.5690614336 +41 48 01.741245588   9.86 9.65 9.587   F1V 96 0
21 V* WY Cnc RS* 09 01 55.4508997464 +26 41 22.746780564 10.54 10.34 9.60     G5V 201 0
22 V* XY UMa RS* 09 09 55.9354759992 +54 29 17.724193872       9.620   G5 253 0
23 V* VV UMa EB* 09 38 06.7191516888 +56 01 07.288559904   10.42 10.28 10.135   A2V 137 0
24 V* XY Leo EB* 10 01 40.4170488672 +17 24 32.602180644   10.66 9.68 8.855 8.474 K0V 277 0
25 V* AP Leo EB* 11 05 05.0213426040 +05 09 06.404796468   10.07 9.57 8.971 8.849 F8V 124 0
26 V* Z Dra EB* 11 45 29.2091494248 +72 14 58.328231100   11.11 10.67     A5V 149 0
27 HD 106400 EB* 12 14 20.99618 +11 49 09.3870   9.94 9.22 9.37 8.390 G8V 225 0
28 V* EX Hya CV* 12 52 24.2222471899 -29 14 55.999766523   13.51 13.49 13.55   M5-6V 694 0
29 V* RS CVn RS* 13 10 36.9077924448 +35 56 05.584994412 8.57 8.51 7.93 7.7   F6IV+G8IV 724 0
30 V* UX UMa CV* 13 36 40.9531256400 +51 54 49.423353228   12.78 13.26     sdOB 528 0
31 HD 150708A RS* 16 39 03.9794437032 +60 41 58.778276820   9.34 8.61     G5Vn 194 0
32 V* V2051 Oph CV* 17 08 19.0873634976 -25 48 31.704262776   17.5       ~ 243 0
33 V* AK Her EB* 17 13 57.8236051704 +16 21 00.618202044   9.04 8.51   7.874 F4V 261 0
34 V* V566 Oph EB* 17 56 52.4103516432 +04 59 15.326210328   8.03 7.58     F5V 251 0
35 V* DQ Her CV* 18 07 30.2510391864 +45 51 32.564791872   14.605 14.443 14.800   M3+Ve 1012 1
36 V* V839 Oph EB* 18 09 21.2653435464 +09 09 03.607091388   9.62 9.03   8.286 F7V 141 0
37 * U Sge EB* 19 18 48.4082723376 +19 36 37.722978540 6.23 6.61 6.58     B7III+K1III 373 0
38 V* OO Aql SB* 19 48 12.6525764880 +09 18 32.374957356   10.26 9.49 8.773 8.762 F9V 229 1
39 V* V4140 Sgr CV* 19 58 49.7019378552 -38 56 13.224023700           ~ 68 0
40 V* WW Cyg EB* 20 04 02.7108881088 +41 35 16.462624380   10.163 10.10   9.875 B8k:+G? 113 0
41 V* W Del EB* 20 37 40.0858816920 +18 17 03.755963580   9.89 9.81     A0 148 0
42 BD+34 4217A SB* 20 58 13.4532832453 +35 10 29.672620146   10.95 10.109     ~ 265 0
43 BD+34 4217 ** 20 58 13.4533595470 +35 10 29.664154462     10.13     G9.5Ve+K3Ve 262 0
44 V* RT Lac RS* 22 01 30.7406691720 +43 53 25.643931396   10.092 8.84     G9+K1IVIV 272 0
45 V* AR Lac RS* 22 08 40.8182089680 +45 44 32.107863120 7.09 6.83 6.11     K0IVe+G5IV 724 0
46 V* SW Lac EB* 22 53 41.6540031672 +37 56 18.607477416   9.65 8.51     K0Vv 365 0
47 V* RT And RS* 23 11 10.0984058784 +53 01 33.031339248   9.58 9.043 8.73   F8V+G0-K1-3V 370 0
48 V* AB And EB* 23 11 32.0859315024 +36 53 35.108950344   10.62 9.50 9.009 8.585 G5+G5V 267 0
49 V* SZ Psc RS* 23 13 23.7784875720 +02 40 31.602660924   8.19 7.44   6.390 G5Vp 318 1
50 V* IP Peg CV* 23 23 08.5362249504 +18 24 59.206884012           M2 381 0
51 V* U Peg EB* 23 57 58.4766636672 +15 57 10.087001640   10.26 9.63 8.871 8.970 G2V 247 0

To bookmark this query, right click on this link: simbad:objects in 1999A&A...349..887L and select 'bookmark this link' or equivalent in the popup menu