2005A&A...444..549F


Query : 2005A&A...444..549F

2005A&A...444..549F - Astronomy and Astrophysics, volume 444, 549-559 (2005/12-3)

Fundamental parameters and granulation properties of Alpha Centauri A and B obtained from inversions of their spectra.

FRUTIGER C., SOLANKI S.K. and MATHYS G.

Abstract (from CDS):

Properties of stellar granulation are obtained by inverting spectra of the late-type stars α Centauri A and B. Our inversions are based on a multi-component model of the stellar photosphere and take into account the center-to-limb variation and rotational broadening. The different atmospheric components describe the areas harboring up-, down- and horizontal flows. The inversions are constrained by fitting not only the flux profiles, but also their line bisectors, and by using a simple mass conservation scheme. The inversions return the properties of convection at the stellar surface, including the stratification of the thermodynamic parameters, as well as fundamental parameters such as the gravitational acceleration, vsin i and the element abundances. For α Cen A (G2V) the derived stratifications of the temperature and convective velocity are very similar to the Sun, while for α Cen B (K1V) we find similar up- and downflow velocities, but lower horizontal speeds and a reduced overshoot. The latter is consistent with the smaller scale height of the atmosphere, while mass conservation arguments taken with the lower horizontal speed imply that the granules on α Cen B are smaller than on the Sun. Both these properties are in good agreement with the hydrodynamic simulation of Nordlund & Dravins (1990A&A...228...155N). The inversions also return the fundamental parameters (Teff, logg, abundances, vsin i, etc.) of the two stars. These values are on the whole in good agreement with literature values. Also, most of them do not strongly depend on the details of the inversion. However, importantly, the element abundances are 0.1 to 0.15dex lower when a 2- or 3-component inversion is carried out than with a 1-component inversion.

Abstract Copyright:

Journal keyword(s): line: profiles - radiative transfer - stars: atmospheres - stars: late-type

Simbad objects: 3

goto Full paper

goto View the references in ADS

Number of rows : 3
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 * alf Boo RG* 14 15 39.67207 +19 10 56.6730 2.46 1.18 -0.05 -1.03 -1.68 K1.5IIIFe-0.5 2318 1
2 * alf Cen B PM* 14 39 35.06311 -60 50 15.0992 2.89 2.21 1.33     K1V 1024 2
3 * alf Cen A SB* 14 39 36.49400 -60 50 02.3737 0.96 0.72 0.01     G2V 1280 1

To bookmark this query, right click on this link: simbad:objects in 2005A&A...444..549F and select 'bookmark this link' or equivalent in the popup menu