2009A&A...507...61S


Query : 2009A&A...507...61S

2009A&A...507...61S - Astronomy and Astrophysics, volume 507, 61-69 (2009/11-3)

Near-IR search for lensed supernovae behind galaxy clusters. I. Observations and transient detection efficiency.

STANISHEV V., GOOBAR A., PAECH K., AMANULLAH R., DAHLEN T., JOENSSON J., KNEIB J.P., LIDMAN C., LIMOUSIN M., MOERTSELL E., NOBILI S., RICHARD J., RIEHM T. and VON STRAUSS M.

Abstract (from CDS):

Massive galaxy clusters at intermediate redshift can magnify the flux of distant background sources by several magnitudes. We exploit this effect to search for lensed distant supernovae that may otherwise be too faint to be detected. A supernova search was conducted at near infrared wavelengths using the ISAAC instrument at the VLT. The massive galaxy clusters Abell 1689, Abell 1835, and AC114 were observed for a total of 20h to search for supernovae in gravitationally magnified background galaxies. The observations were split into individual epochs of 2h of exposure time, separated by approximately one month. Image-subtraction techniques were used to search for transient objects with light curve properties consistent with supernovae, both in our new and archival ISAAC/VLT data. The limiting magnitude of the individual epochs was estimated by adding artificial stars to the subtracted images. Most of the epochs reach 90% detection efficiency at SZ(J)≃23.8-24.0mag (Vega). Two transient objects, both in archival images of Abell 1689 and AC114, were detected. The transient in AC114 coincides - within the position uncertainty - with an X-ray source and is likely to be a variable AGN at the cluster redshift. The transient in Abell 1689 was found at SZ=23.24mag, ∼0.5" away from a galaxy with photometric redshift zgal=0.6±0.15. The light curves and the colors of the transient are consistent with a reddened type IIP supernova at redshift z=0.59±0.05. The lensing model of Abell 1689 predicts ∼1.4 mag of magnification at the position of the transient, making it the most magnified supernova ever found and only the second supernova found behind a galaxy cluster. Our pilot survey has demonstrated the feasibility to find distant gravitationally magnified supernovae behind massive galaxy clusters. One likely supernova was found behind Abell 1689, in accordance with the expectations for this survey, as shown in an accompanying analysis paper.

Abstract Copyright:

Journal keyword(s): supernovae: general - gravitational lensing - methods: observational - techniques: photometric

Simbad objects: 12

goto Full paper

goto View the references in ADS

Number of rows : 12
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 SN 2002ic SN* 01 30 02.55 +21 53 06.9     18.5     SNIapec 237 1
2 SN 2005gj SN* 03 01 11.96 -00 33 13.9   18.6       SNIapec 196 1
3 SN 2003hn SN* 03 44 36.1 -44 37 49     14.1     SNIIP 64 1
4 SN 1999em SN* 04 41 27.04 -02 51 45.2   13.79 13.7     SNIIP 674 1
5 GD 153 WD* 12 57 02.3224909560 +22 01 52.634778240 11.883 13.060 13.349 13.488 13.669 DA1.2 354 0
6 ACO 1689 ClG 13 11 29.5 -01 20 28           ~ 1125 0
7 ACO 1835 ClG 14 01 02.07 +02 52 43.2           ~ 688 1
8 V* WZ Sge CV* 20 07 36.5037622512 +17 42 14.733254952   15.30 15.20     DAepv 946 0
9 SN 2004et SN* 20 35 25.33 +60 07 17.7   12.88       SNIIP 489 1
10 SN 2001cy SN* 22 09 27.76 +40 59 16.5     16.3     SNII 23 1
11 [MKK2006] AC114-2 AGN 22 58 51.4 -34 49 12   23.51 22.34 21.42 20.59 ~ 4 0
12 ACO S 1077 ClG 22 58 52.34 -34 46 54.6           ~ 188 0

To bookmark this query, right click on this link: simbad:objects in 2009A&A...507...61S and select 'bookmark this link' or equivalent in the popup menu