2014A&A...561A..30M


Query : 2014A&A...561A..30M

2014A&A...561A..30M - Astronomy and Astrophysics, volume 561A, 30-30 (2014/1-1)

Relativistic 3D precessing jet simulations for the X-ray binary SS 433.

MONCEAU-BAROUX R., PORTH O., MELIANI Z. and KEPPENS R.

Abstract (from CDS):

Modern high-resolution radio observations allow us a closer look into the objects that power relativistic jets. This is especially the case for SS 433, an X-ray binary that emits a precessing jet that is observed down to the subparsec scale. We aim to study full 3D dynamics of relativistic jets associated with active galactic nuclei or X-ray binaries (XRB). In particular, we incorporate the precessing motion of a jet into a model for the jet associated with the XRB SS 433. Our study of the jet dynamics in this system focuses on the subparsec scales. We investigate the impact of jet precession and the variation of the Lorentz factor of the injected matter on the general 3D jet dynamics and its energy transfer to the surrounding medium. After visualizing and quantifying jet dynamics, we aim to realize synthetic radio mapping of the data, to compare our results with observations. For our study we used a block-tree adaptive mesh refinement scheme and an inner time-dependent boundary prescription to inject precessing bipolar supersonic jets. Parameters extracted from observations were used. Different 3D jet realizations that match the kinetic flux of the SS 433 jet were intercompared, which vary in density contrast and jet beam velocity. We tracked the energy content deposited in different regions of the domain affected by the jet. Our code allows us to follow the adiabatic cooling of a population of relativistic particles injected by the jet. This evolving energy spectrum of accelerated electrons, using a pressure-based proxy for the magnetic field, allowed us to obtain the radio emission from our simulation. We find a higher energy transfer for a precessing jet than for standing jets with otherwise identical parameters as a result of the effectively increased interaction area. We obtain synthetic radio maps for all jets, from which one can see that dynamical flow features are clearly linked with enhanced emission sites. The synthetic radio map best matches a jet model with the canonical propagation speed of 0.26c and a precession angle of 20°. Overdense precessing jets experience significant deceleration in their propagation through the interstellar medium, while the overall jet is of helical shape. Our results show that the kinematic model for SS 433 has to be corrected for deceleration assuming ballistic propagation on a subparsec scale.

Abstract Copyright:

Journal keyword(s): galaxies: jets - hydrodynamics - relativistic processes

Simbad objects: 6

goto Full paper

goto View the references in ADS

Number of rows : 6
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 M 87 AGN 12 30 49.42338414 +12 23 28.0436859 10.16 9.59 8.63   7.49 ~ 7189 3
2 NGC 5532 LIN 14 16 52.9532 +10 48 26.618   13.3 12.59     ~ 347 3
3 NAME Aql Region reg 18 31.1 -02 10           ~ 391 0
4 SS 433 HXB 19 11 49.5647697480 +04 58 57.827127648   16.854 14.643     A3/7I 2122 4
5 SNR G039.7-02.0 SNR 19 12 20 +04 55.0           ~ 353 1
6 NAME Cyg A Sy2 19 59 28.35656837 +40 44 02.0972325   16.22 15.10     ~ 2366 2

To bookmark this query, right click on this link: simbad:objects in 2014A&A...561A..30M and select 'bookmark this link' or equivalent in the popup menu