2018A&A...619A.113M


Query : 2018A&A...619A.113M

2018A&A...619A.113M - Astronomy and Astrophysics, volume 619A, 113-113 (2018/11-1)

Probing the protoplanetary disk gas surface density distribution with 13CO emission.

MIOTELLO A., FACCHINI S., VAN DISHOECK E.F. and BRUDERER S.

Abstract (from CDS):


Context. How protoplanetary disks evolve is still an unsolved problem where different processes may be involved. Depending on the process, the disk gas surface density distribution Σgas may be very different and this could have diverse implications for planet formation. Together with the total disk mass, it is key to constrain Σgas as function of disk radius R from observational measurements.
Aims. In this work we investigate whether spatially resolved observations of rarer CO isotopologues, such as 13CO, may be good tracers of the gas surface density distribution in disks.
Methods. Physical-chemical disk models with different input Σgas(R) were run, taking into account CO freeze-out and isotope-selective photodissociation. The input disk surface density profiles were compared with the simulated 13CO intensity radial profiles to check whether and where the two follow each other.
Results. For each combination of disk parameters, there is always an intermediate region in the disk where the slope of the 13CO radial emission profile and Σgas(R) coincide. In the inner part of the disk, the line radial profile underestimates Σgas, as 13CO emission becomes optically thick. The same happens at large radii where the column densities become too low and 13CO is not able to efficiently self-shield. Moreover, the disk becomes too cold and a considerable fraction of 13CO is frozen out, thus it does not contribute to the line emission. If the gas surface density profile is a simple power-law of the radius, the input power-law index can be retrieved within a ∼20% uncertainty if one choses the proper radial range. If instead Σgas(R) follows the self-similar solution for a viscously evolving disk, retrieving the input power-law index becomes challenging, in particular for small disks. Nevertheless, we find that the power-law index γ can be in any case reliably fitted at a given line intensity contour around 6K.km/s^, and this produces a practical method to constrain the slope of Σgas(R). Application of such a method is shown in the case study of the TW Hya disk.
Conclusions. Spatially resolved 13CO line radial profiles are promising to probe the disk surface density distribution, as they directly trace Σgas(R) profile at radii well resolvable by ALMA. There, chemical processes like freeze-out and isotope-selective photodissociation do not affect the emission, and, assuming that the volatile carbon does not change with radius, no chemical model is needed when interpreting the observations.

Abstract Copyright: © ESO 2018

Journal keyword(s): protoplanetary disks - astrochemistry - submillimeter: general - radiative transfer

Simbad objects: 3

goto Full paper

goto View the references in ADS

Number of rows : 3
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 V* TW Hya TT* 11 01 51.9053285064 -34 42 17.033218380   11.94 10.50 10.626 9.18 K6Ve 1892 1
2 HD 163296 Ae* 17 56 21.2881851168 -21 57 21.871819008 7.00 6.93 6.85 6.86 6.67 A3VaekA1mA1 1110 0
3 HD 169142 Ae* 18 24 29.7799891464 -29 46 49.327400568   8.42 8.16     F1VekA3mA3_lB? 448 0

To bookmark this query, right click on this link: simbad:objects in 2018A&A...619A.113M and select 'bookmark this link' or equivalent in the popup menu