2018A&A...620A.119D


Query : 2018A&A...620A.119D

2018A&A...620A.119D - Astronomy and Astrophysics, volume 620A, 119-119 (2018/12-1)

X-shooter and ALMA spectroscopy of GRB 161023A. A study of metals and molecules in the line of sight towards a luminous GRB.

DE UGARTE POSTIGO A., THONE C.C., BOLMER J., SCHULZE S., MARTIN S., KANN D.A., D'ELIA V., SELSING J., MARTIN-CARRILLO A., PERLEY D.A., KIM S., IZZO L., SANCHEZ-RAMIREZ R., GUIDORZI C., KLOTZ A., WIERSEMA K., BAUER F.E., BENSCH K., CAMPANA S., CANO Z., COVINO S., COWARD D., DE CIA A., DE GREGORIO-MONSALVO I., DE PASQUALE M., FYNBO J.P.U., GREINER J., GOMBOC A., HANLON L., HANSEN M., HARTMANN D.H., HEINTZ K.E., JAKOBSSON P., KOBAYASHI S., MALESANI D.B., MARTONE R., MEINTJES P.J., MICHALOWSKI M.J., MUNDELL C.G., MURPHY D., OATES S., SALMON L., VAN SOELEN B., TANVIR N.R., TURPIN D., XU D. and ZAFAR T.

Abstract (from CDS):


Context. Long gamma-ray bursts (GRBs) are produced during the dramatic deaths of massive stars with very short lifetimes, meaning that they explode close to the birth place of their progenitors. Over a short period they become the most luminous objects observable in the Universe, being perfect beacons to study high-redshift star-forming regions.
Aims. We aim to use the afterglow of GRB 161023A at a redshift z=2.710 as a background source to study the environment of the explosion and the intervening systems along its line of sight.
Methods. For the first time, we complement ultraviolet (UV), optical and near-infrared (NIR) spectroscopy with millimetre spectroscopy using the Atacama Large Millimeter Array (ALMA), which allows us to probe the molecular content of the host galaxy. The X-shooter spectrum shows a plethora of absorption features including fine-structure and metastable transitions of Fe, Ni, Si, C, and O. We present photometry ranging from 43 s to over 500 days after the burst.
Results. We infer a host-galaxy metallicity of [Zn/H]=-1.11±0.07, which, corrected for dust depletion, results in [X/H]=-0.94± 0.08. We do not detect molecular features in the ALMA data, but we derive limits on the molecular content of log(NCO/cm–2)<15.7 and log(NHCO+/cm–2<13.2, which are consistent with those that we obtain from the optical spectra, log(NH2/cm–2)<15.2 and log(NCO/cm–2)<14.5. Within the host galaxy, we detect three velocity systems through UV, optical and NIR absorption spectroscopy, all with levels that were excited by the GRB afterglow. We determine the distance from these systems to the GRB to be in the range between 0.7 and 1.0kpc. The sight line to GRB 161023A shows nine independent intervening systems, most of them with multiple components.
Conclusions. Although no molecular absorption was detected for GRB 161023A, we show that GRB millimetre spectroscopy is now feasible and is opening a new window on the study of molecular gas within star-forming galaxies at all redshifts. The most favoured lines of sight for this purpose will be those with high metallicity and dust.

Abstract Copyright: © ESO 2018

Journal keyword(s): gamma-ray burst: individual: GRB 161023A - techniques: spectroscopic - ISM: abundances - ISM: molecules - galaxies: ISM - submillimeter: ISM

VizieR on-line data: <Available at CDS (J/A+A/620/A119): tablea1.dat tablea2.dat>

Nomenclature: Fig. 3, Table 2: [DTB2018] SN (Nos S1-S4).

Simbad objects: 36

goto Full paper

goto View the references in ADS

Number of rows : 36
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 GRB 071031 gB 00 25 37.40 -58 03 33.9           ~ 166 0
2 NAME SMC G 00 52 38.0 -72 48 01   2.79 2.2     ~ 11149 1
3 GRB 050904 gB 00 54 50.794 +14 05 09.42           ~ 470 0
4 GRB 061007 gB 03 05 19.510 -50 30 02.50 14.28 14.40 12.95     ~ 289 1
5 GRB 121024A gB 04 41 53.31 -12 17 26.1           ~ 120 0
6 NAME LMC G 05 23 34.6 -69 45 22     0.4     ~ 17434 0
7 GRB 080129 gB 07 01 08.13 -07 50 47.8           ~ 79 0
8 GRB 980329 gB 07 02 41 +38 50.7           ~ 273 1
9 GRB 100219A gB 10 16 48.48 -12 34 00.0           ~ 112 0
10 SN 2003dh SN* 10 44 50.030 +21 31 18.15     16.2     SNIcpec 1208 1
11 SN 2017iuk SN* 11 09 39.49 -12 35 18.7           ~ 153 0
12 SN 2013cq SN* 11 32 32.84 +27 41 56.2           SNIc 514 1
13 GRB 080607A gB 12 59 47.14 +15 55 09.6           ~ 235 0
14 GRB 090313 gB 13 13 36.00 +08 05 10.7           ~ 137 0
15 GRB 050730 gB 14 08 17.090 -03 46 18.90   20.32 17.68     ~ 313 0
16 GRB 080310 gB 14 40 13.89 -00 10 30.4           ~ 189 0
17 GRB 111005A gB 14 53 15.60 -19 43 19.1           ~ 64 0
18 GRB 110715A gB 15 50 44.090 -46 14 06.53           ~ 100 0
19 GRB 120327A gB 16 27 27.49 -29 24 53.8           ~ 95 0
20 GRB 130606A gB 16 37 35.12 +29 47 46.4           ~ 154 0
21 GRB 100418A gB 17 05 26.96 +11 27 41.9           ~ 180 0
22 GRB 120815A gB 18 15 54.40 -52 07 29.0           ~ 85 0
23 GRB 080603A gB 18 37 37.95 +62 44 39.6           ~ 82 0
24 GRB 080413A gB 19 09 11.73 -27 40 39.6           ~ 143 0
25 QSO B1921-293 BLL 19 24 51.05595254 -29 14 30.1210248   18.71 18.21 15.07   ~ 868 0
26 [DTB2018] S4 smm 20 44 04.598 -47 39 52.88           ~ 1 0
27 [DTB2018] S3 smm 20 44 04.676 -47 39 42.95           ~ 1 0
28 [DTB2018] S2 smm 20 44 04.892 -47 39 42.55           ~ 1 0
29 GRB 161023A gB 20 44 05.20 -47 39 48.7           ~ 40 0
30 [DTB2018] S1 smm 20 44 05.398 -47 39 48.15           ~ 1 0
31 QSO B2052-474 Bla 20 56 16.35980507 -47 14 47.6277179   18.29 19.1 18.07   ~ 316 1
32 GRB 100621A gB 21 01 13.12 -51 06 22.5           ~ 184 0
33 GRB 050922C gB 21 09 33.000 -08 45 30.10 15.15 15.86 14.69     ~ 282 0
34 GRB 060607 gB 21 58 50.400 -22 29 46.70 18.49 16.67 15.09     ~ 295 0
35 GRB 050820A gB 22 29 38.110 +19 33 37.10 18.33 19.00 18.47     ~ 386 0
36 Fermi bn080810549 gB 23 47 08.00 +00 18 35.1           ~ 213 0

To bookmark this query, right click on this link: simbad:objects in 2018A&A...620A.119D and select 'bookmark this link' or equivalent in the popup menu