2020A&A...640A.111A


Query : 2020A&A...640A.111A

2020A&A...640A.111A - Astronomy and Astrophysics, volume 640A, 111-111 (2020/8-1)

Outflows, cores, and magnetic field orientations in W43-MM1 as seen by ALMA.

ARCE-TORD C., LOUVET F., CORTES P.C., MOTTE F., HULL C.L.H., LE GOUELLEC V.J.M., GARAY G., NONY T., DIDELON P. and BRONFMAN L.

Abstract (from CDS):


Aims. It has been proposed that the magnetic field, which is pervasive in the interstellar medium, plays an important role in the process of massive star formation. To better understand the impact of the magnetic field at the pre- and protostellar stages, high-angular resolution observations of polarized dust emission toward a large sample of massive dense cores are needed. We aim to reveal any correlation between the magnetic field orientation and the orientation of the cores and outflows in a sample of protostellar dense cores in the W43-MM1 high-mass star-forming region.
Methods. We used the Atacama Large Millimeter Array in Band 6 (1.3mm) in full polarization mode to map the polarized emission from dust grains at a physical scale of ∼2700au. We used these data to measure the orientation of the magnetic field at the core scale. Then, we examined the relative orientations of the core-scale magnetic field, of the protostellar outflows, and of the major axis of the dense cores determined from a 2D Gaussian fit in the continuum emission.
Results. We find that the orientation of the dense cores is not random with respect to the magnetic field. Instead, the dense cores are compatible with being oriented 20-50° with respect to the magnetic field. As for the outflows, they could be oriented 50-70° with respect to the magnetic field, or randomly oriented with respect to the magnetic field, which is similar to current results in low-mass star-forming regions.
Conclusions. The observed alignment of the position angle of the cores with respect to the magnetic field lines shows that the magnetic field is well coupled with the dense material; however, the 20-50° preferential orientation contradicts the predictions of the magnetically-controlled core-collapse models. The potential correlation of the outflow directions with respect to the magnetic field suggests that, in some cases, the magnetic field is strong enough to control the angular momentum distribution from the core scale down to the inner part of the circumstellar disks where outflows are triggered.

Abstract Copyright: © C. Arce-Tord et al. 2020

Journal keyword(s): magnetic fields - polarization - instrumentation: interferometers - stars: formation - stars: massive

Simbad objects: 7

goto Full paper

goto View the references in ADS

Number of rows : 7
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 V* V1213 Tau Or* 04 31 37.5055489536 +18 12 24.383952396           K7 568 0
2 IRAS 07427-2400 HII 07 44 51.997 -24 07 42.11           ~ 75 0
3 GAL 012.89+00.49 HII 18 11 51.3 -17 31 29           ~ 184 0
4 NAME HH 80-81 HH 18 19 06 -20 51.4           ~ 224 0
5 SNR G030.8-00.0 SNR 18 47 32 -01 56.5           ~ 531 0
6 W 34 Rad 18 47 47.0 -01 54 35           ~ 17 0
7 AGAL G030.818-00.056 cor 18 47 47.0 -01 54 28           ~ 164 0

To bookmark this query, right click on this link: simbad:objects in 2020A&A...640A.111A and select 'bookmark this link' or equivalent in the popup menu