2022A&A...664A.138S


Query : 2022A&A...664A.138S

2022A&A...664A.138S - Astronomy and Astrophysics, volume 664A, 138-138 (2022/8-1)

Calibrated gas accretion and orbital migration of protoplanets in 1D disc models.

SCHIB O., MORDASINI C. and HELLED R.

Abstract (from CDS):


Context. Orbital migration and gas accretion are two interdependent key processes that govern the evolution of planets in protoplanetary discs. The final planetary properties such as masses and orbital periods strongly depend on the treatment of those two processes.
Aims. Our aim is to develop a simple prescription for migration and accretion in 1D disc models, calibrated with results of 3D hydro-dynamic simulations. Our focus lies on non-self-gravitating discs, but we also discuss to what degree our prescription could be applied when the discs are self-gravitating.
Methods. We studied migration using torque densities. Our model for the torque density is based on existing fitting formulas, which we subsequently modify to prevent premature gap-opening. At higher planetary masses, we also apply torque densities from hydrody-namic simulations directly to our 1D model. These torque densities allow us to model the orbital evolution of an initially low-mass planet that undergoes runaway-accretion to become a massive planet. The two-way exchange of angular momentum between disc and planet is included. This leads to a self-consistent treatment of gap formation that only relies on directly accessible disc parameters. We present a formula for Bondi and Hill gas accretion in the disc-limited regime. This formula is self-consistent in the sense that mass is removed from the disc in the location from where it is accreted. The prescription is appropriate when the planet is smaller than, comparable to, or larger than the disc scale height.
Results. We find that the resulting evolution in mass and semi-major axis in the 1D framework is in good agreement with those from 3D hydrodynamical simulations for a range of parameters.
Conclusions. Our prescription is valuable for simultaneously modelling migration and accretion in 1D models, which allows a planet's evolution to be followed over the entire lifetime of a disc. It is applicable also in situations where the surface density is significantly disturbed by multiple gap-opening planets or processes like infall. We conclude that it is appropriate and beneficial to apply torque densities from hydrodynamic simulations in 1D models, at least in the parameter space we study here. More work is needed in order to determine whether our approach is also applicable in an even wider parameter space and in situations with more complex disc thermodynamics, or when the disc is self-gravitating.

Abstract Copyright: © O. Schib et al. 2022

Journal keyword(s): protoplanetary disks - accretion - accretion disks - planets and satellites: formation

VizieR on-line data: <Available at CDS (J/A+A/664/A138): upp_1e-4.dat upp_2e-4.dat upp_3e-4.dat upp_6e-5.dat low_1e-3.dat low_2e-3.dat low_3e-4.dat low_7e-4.dat>

Simbad objects: 1

goto Full paper

goto View the references in ADS

Number of rows : 1
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 * 51 Peg b Pl 22 57 27.9804852576 +20 46 07.797040104           ~ 665 1

Query : 2022A&A...664A.138S

Basic data :
* 51 Peg b -- Extra-solar Planet
Origin of the objects types :

(Ref) Object type as listed in the reference "Ref"
(acronym) Object type linked to the acronym according to the original reference
() Anterior to 2007, before we can link the objet type to a reference, or given by the CDS team in some particular cases

Other object types:
Pl? (), * (*,HD), Pl (1995Natur)
Syntax of coordinates is : "ra dec (wtype) [error ellipse] quality bibcode" :
  • ra dec : right ascension and declination (unit and frame defined according to your Output Options)
    Grey values are increasing the original precision due to the computation of frame transformations
  • (wtype) : wavelength class for the origin of the coordinates (Rad, mm, IR, Optical, UV, Xray, Gam)
  • [error ellipse] : measurement uncertainty, on (ra,dec) if the positional angle is 90 degrees, on (majaxis,minaxis) otherwise (in mas at defined epoch in the original catalogue),
    position angle (in degrees North celestial pole to East)
  • quality : flag of quality
    • E ≥ 10"
    • D : 1-10" (and some old data)
    • C : 0.1-1"
    • B : 0.01-0.1" + 2MASS, Tyc
    • A : VLBI, Hipparcos
  • bibcode : bibcode of the coordinates reference
ICRS coord. (ep=J2000) :
22 57 27.9804852576 +20 46 07.797040104 (Optical) [ 0.0535 0.0543 90 ] A 2020yCat.1350....0G
Syntax of coordinates is : "ra dec (wtype) [error ellipse] quality bibcode" :
  • ra dec : right ascension and declination (unit and frame defined according to your Output Options)
    Grey values are increasing the original precision due to the computation of frame transformations
  • (wtype) : wavelength class for the origin of the coordinates (Rad, mm, IR, Optical, UV, Xray, Gam)
  • [error ellipse] : measurement uncertainty, on (ra,dec) if the positional angle is 90 degrees, on (majaxis,minaxis) otherwise (in mas at defined epoch in the original catalogue),
    position angle (in degrees North celestial pole to East)
  • quality : flag of quality
    • E ≥ 10"
    • D : 1-10" (and some old data)
    • C : 0.1-1"
    • B : 0.01-0.1" + 2MASS, Tyc
    • A : VLBI, Hipparcos
  • bibcode : bibcode of the coordinates reference
FK4 coord. (ep=B1950 eq=1950) :
22 55 00.3824419857 +20 30 01.119685421 [ 0.0535 0.0543 90 ]
Syntax of coordinates is : "ra dec (wtype) [error ellipse] quality bibcode" :
  • ra dec : right ascension and declination (unit and frame defined according to your Output Options)
    Grey values are increasing the original precision due to the computation of frame transformations
  • (wtype) : wavelength class for the origin of the coordinates (Rad, mm, IR, Optical, UV, Xray, Gam)
  • [error ellipse] : measurement uncertainty, on (ra,dec) if the positional angle is 90 degrees, on (majaxis,minaxis) otherwise (in mas at defined epoch in the original catalogue),
    position angle (in degrees North celestial pole to East)
  • quality : flag of quality
    • E ≥ 10"
    • D : 1-10" (and some old data)
    • C : 0.1-1"
    • B : 0.01-0.1" + 2MASS, Tyc
    • A : VLBI, Hipparcos
  • bibcode : bibcode of the coordinates reference
Gal coord. (ep=J2000) :
090.0626441289023 -34.7272597942784 [ 0.0535 0.0543 90 ]
Syntax of proper motions is : "pm-ra pm-dec [error ellipse] quality bibcode"
  • pm-ra : mu-ra*cos(dec) (expressed in the ICRS system in mas/yr)
  • pm-dec : mu-dec (expressed in the ICRS system in mas/yr)
  • [error ellipse] : error major axis and minor axis (in mas), orientation angle (in deg)
  • quality : flag of quality (A=best quality -> E=worst quality, {� } =unknown quality)
  • bibcode : bibcode of the proper motion reference
Proper motions mas/yr :
207.328 61.164 [0.088 0.075 90] A 2020yCat.1350....0G
Syntax of parallax is : 'value quality [error] bibcode'
  • value : parallax value
  • quality : flag of quality (A=best quality -> E=worst quality, {� } =unknown quality)
  • [error] : mean error
  • bibcode : bibcode of the parallax reference
Parallaxes (mas):
64.4048 [0.0771] A 2020yCat.1350....0G
SIMBAD within arcmin
', {sourceSize:12, color:'#30a090'})); aladin.on('objectClicked', function(object) { var objName=object.data.MAIN_ID; aladin.showPopup(object.ra,object.dec,'',''+ objName+''); });" title="Show Simbad objects"> Overlay Simbad points in this preview
Back
All CDSPortal (CDSPortal)

Send to sendBySAMP sendBySAMP

sedIcon
within arcsec The VizieR photometry tool allows for easy visualization of photometry points extracted around the Simbad position from photometry-enabled catalogues in VizieR.
The search radius has to be specified by the user. It is currently limited to a maximum of 30 arcsec. It depends mostly on the precision or quality of the coordinates (SIMBAD and VizieR catalogs), the resolution of the images from which the sources were extracted, source extent, and source crowding.
Suggestions are: crowded field: 0.5 to 1.5 arcsec, 3 arcsec otherwise; uncertain coordinates (SIMBAD quality E or coordinates without reference): 5 to 30 arsec (risky!).
sed-help-icon
Some important notes on this object about identifications and objects associations.
notes:


Hierarchy : number of linked objects
whatever the membership probability is (see description here ) :

: 1 Display criteria :

The link on the acronym of the identifiers give access to the information for this acronym in the dictionary of nomenclature.
Identifiers (3) :
An access of full data is available using the icon Vizier near the identifier of the catalogue

* 51 Peg b HD 217014b NAME Dimidium

References (665 between 1850 and 2024) (Total 665)
Simbad bibliographic survey began in 1850 for stars (at least bright stars) and in 1983 for all other objects (outside the solar system).
Follow new references on this object
                Reference summaries :

                from: to:

                 or select by : (not exhaustive, explanation here)


Observing logs


ISO : 9   

   


External archives :

Link by name to the catalogue in VizieR :

HD 217014b

Search by coordinates in Vizier (radius: 5 arcsec)


Annotations :
Annotations allow a user to add a note or report an error concerning the astronomical object and its data. It requires registration to post a note. See description .
Please, have a look at Best practices. The list of all annotations to SIMBAD objects can be found here .

Currently no annotations available

add an annotation to this object

report an error concerning the data of this object


To bookmark this query, right click on this link: simbad:objects in 2022A&A...664A.138S and select 'bookmark this link' or equivalent in the popup menu