PDS 70d , the SIMBAD biblio

2020AJ....160..221C - Astron. J., 160, 221-221 (2020/November-0)

The separation and Hα contrasts of massive accreting planets in the gaps of transitional disks: predicted Hα protoplanet yields for adaptive optics surveys.


Abstract (from CDS):

We present a massive accreting gap planet model that ensures large gaps in transitional disks are kept dust free by the scattering action of three coplanar quasi-circular planets in a 1:2:4 mean motion resonance (MMR). This model uses the constraint of the observed gap size, and the dust-free nature of the gap, to determine within ∼10% the possible orbits for three massive planets in an MMR. Calculated orbits are consistent with the observed orbits and Hα emission (the brightest line to observe these planets) for LkCa 15 b, PDS 70 b, and PDS 70 c within observational errors. Moreover, the model suggests that the scarcity of detected Hα planets is likely a selection effect of the current limitations of non-coronagraphic, low (<10%) Strehl, Hα imaging with adaptive optics (AO) systems used in past Hα surveys. We predict that as higher Strehl AO systems (with high-performance custom coronagraphs; like the 6.5 m Magellan Telescope MagAO-X system) are utilized at Hα, the number of detected gap planets will substantially increase by more than tenfold. For example, we show that >25 ± 5 new Hα "gap planets" are potentially discoverable by a survey of the best 19 transitional disks with MagAO-X. Detections of these accreting protoplanets will significantly improve our understanding of planet formation, planet growth and accretion, solar system architectures, and planet-disk interactions.

Abstract Copyright: © 2020. The American Astronomical Society. All rights reserved.

Journal keyword(s): Planetary system formation - Planet formation - Protoplanetary disks - Stellar accretion disks - Exoplanet detection methods - Direct imaging - Circumstellar disks - Stellar accretion - Accretion - Adaptive interferometry - Laser guide stars - Coronagraphic imaging

Status at CDS : Large table(s) of objects being ingested in VizieR.

Simbad objects: 43

goto View the references in ADS


© Université de Strasbourg/CNRS

    • Contact