GRB 090529 , the SIMBAD biblio

GRB 090529 , the SIMBAD biblio (59 results) C.D.S. - SIMBAD4 rel 1.7 - 2021.06.18CEST17:25:35


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2021MNRAS.501.4974V 20       D               1 120 ~ A comprehensive view of blackbody components in the X-ray spectra of GRBs. VALAN V. and LARSSON J.
2020ApJ...894...52X 19       D               1 68 ~ Magnetar as central engine of gamma-ray bursts: quasi-universal jet, event rate, and X-ray luminosity function of dipole radiations. XIE W.-J., ZOU L., LIU H.-B., et al.
2020MNRAS.494.5259Y 19       D               1 204 ~ Less noticeable shallow decay phase in early X-ray afterglows of GeV/TeV-detected gamma-ray bursts. YAMAZAKI R., SATO Y., SAKAMOTO T., et al.
2019ApJ...871...54L 18       D               1 46 ~ Constraining the braking index and energy partition of magnetar spindown with Swift/XRT data. LU H.-J., LAN L. and LIANG E.-W.
2019ApJ...877..153Z 18       D               2 128 ~ Magnetar as central engine of Gamma-ray bursts: central engine-jet connection, wind-jet energy partition, and origin of some ultra-long bursts. ZOU L., ZHOU Z.-M., XIE L., et al.
2019ApJ...878...62X 18       D               1 46 ~ Determining the efficiency of converting magnetar spindown energy into gamma-ray burst X-ray afterglow emission and its possible implications. XIAO D. and DAI Z.-G.
2019ApJ...883...97Z 18       D               3 199 ~ The shallow decay segment of GRB X-ray afterglow revisited. ZHAO L., ZHANG B., GAO H., et al.
2019ApJS..245....1T 18       D               1 183 ~ Statistical study of gamma-ray bursts with a plateau phase in the X-ray afterglow. TANG C.-H., HUANG Y.-F., GENG J.-J., et al.
2019MNRAS.483.5380T 242       D     X C       5 156 ~ The fraction of ionizing radiation from massive stars that escapes to the intergalactic medium. TANVIR N.R., FYNBO J.P.U., DE UGARTE POSTIGO A., et al.
2018ApJS..236...26L 17       D               3 115 3 Constraining the type of central engine of GRBs with Swift data. LI L., WU X.-F., LEI W.-H., et al.
2017MNRAS.464.4545B viz 17       D               1 924 11 Galaxy gas as obscurer - I. GRBs x-ray galaxies and find an N_ H_3∝M_*_ relation. BUCHNER J., SCHULZE S. and BAUER F.E.
2016ApJ...828...36D viz 17       D               1 172 4 Study of GRB light-curve decay indices in the afterglow phase. DEL VECCHIO R., DAINOTTI M.G. and OSTROWSKI M.
2016ApJ...832..136R 287 34 On the classification of GRBs and their occurrence rates. RUFFINI R., RUEDA J.A., MUCCINO M., et al.
2015A&A...584A..48H viz 16       D               1 359 14 New data support the existence of the Hercules-Corona Borealis Great Wall. HORVATH I., BAGOLY Z., HAKKILA J., et al.
2015ApJ...799....3R 16       D               1 230 45 Gamma-ray bursts are observed off-axis. RYAN G., VAN EERTEN H., MacFADYEN A., et al.
2015ApJ...807...76L viz 16       D               1 375 1 The two-point correlation function of gamma-ray bursts. LI M.-H. and LIN H.-N.
2015ApJS..218...13Y 16       D               1 129 22 An unexpectedly low-redshift excess of Swift gamma-ray burst rate. YU H., WANG F.Y., DAI Z.G., et al.
2014ApJ...785...29S 16       D               1 113 63 Magnetic fields in relativistic collisionless shocks. SANTANA R., BARNIOL DURAN R. and KUMAR P.
2014ApJ...787...66Z viz 16       D               1 345 71 How long does a burst burst? ZHANG B.-B., ZHANG B., MURASE K., et al.
2014ApJ...788...30S viz 16       D               1 328 10 Gamma-ray burst flares: X-ray flaring. II. SWENSON C.A. and ROMING P.W.A.
2014MNRAS.439.3329W 16       D               1 254 33 Cosmological tests using gamma-ray bursts, the star formation rate and possible abundance evolution. WEI J.-J., WU X.-F., MELIA F., et al.
2014MNRAS.444...15H 16       D               1 116 18 Constraining the rate and luminosity function of Swift gamma-ray bursts. HOWELL E.J., COWARD D.M., STRATTA G., et al.
2013ApJ...764..190A 16       D               1 89 0 Limits to the fraction of high-energy photon emitting gamma-ray bursts. AKERLOF C.W. and ZHENG W.
2013ApJ...774....2S 16       D               1 72 15 Gamma-ray burst flares: ultraviolet/optical flaring. I. SWENSON C.A., ROMING P.W.A., DE PASQUALE M., et al.
2013ApJ...774..157D viz 16       D               1 101 40 Determination of the intrinsic luminosity time correlation in the X-ray afterglows of gamma-ray bursts. DAINOTTI M.G., PETROSIAN V., SINGAL J., et al.
2013ApJS..207...39H viz 16       D               1 438 14 The interplanetary network supplement to the Fermi GBM catalog of cosmic gamma-ray bursts. HURLEY K., PAL'SHIN V.D., APTEKAR R.L., et al.
2013ApJS..209...20G viz 16       D               1 754 27 Evidence for new relations between gamma-ray burst prompt and X-ray afterglow emission from 9 years of Swift. GRUPE D., NOUSEK J.A., VERES P., et al.
2013MNRAS.428..167H 16       D               1 192 19 A redshift-observation time relation for gamma-ray bursts: evidence of a distinct subluminous population. HOWELL E.J. and COWARD D.M.
2013MNRAS.428..729M viz 16       D               1 437 106 The prompt-afterglow connection in gamma-ray bursts: a comprehensive statistical analysis of Swift X-ray light curves. MARGUTTI R., ZANINONI E., BERNARDINI M.G., et al.
2013RAA....13..671C 16       D               1 57 ~ X-ray and optical plateaus following the main bursts in GRBs and SNe II-P: a hint about similar late injection behaviors ? CUI X.-H. and XU R.-X.
2012A&A...539A...3B 16       D               1 49 31 The X-ray light curve of gamma-ray bursts: clues to the central engine. BERNARDINI M.G., MARGUTTI R., MAO J., et al.
2012A&A...548A..11D 294       D     X C       7 74 33 The distribution of equivalent widths in long GRB afterglow spectra. DE UGARTE POSTIGO A., FYNBO J.P.U., THOENE C.C., et al.
2012ApJ...746..170M viz 16       D               1 355 10 Rapid, machine-learned resource allocation: application to high-redshift gamma-ray burst follow-up. MORGAN A.N., LONG J., RICHARDS J.W., et al.
2012MNRAS.422.2044X 79           X         2 14 4 The shallow-decay phase in both the optical and X-ray afterglows of Swift GRB 090529A: energy injection into a wind-type medium? XIN L.P., POZANENKO A., KANN D.A., et al.
2011A&A...529A..55M 16       D               1 164 9 Cosmological effects on the observed flux and fluence distributions of gamma-ray bursts: are the most distant bursts in general the faintest ones? MESZAROS A., RIPA J. and RYDE F.
2011ApJ...726...22A 16       D               1 43 10 Searching for needles in Haystacks–Looking for gamma-ray burst γ-rays with the Fermi/LAT detector. AKERLOF C.W., ZHENG W., PANDEY S.B., et al.
2010ApJ...711..495B viz 16       D               3 208 134 The cosmic rate, luminosity function, and intrinsic correlations of long gamma-ray bursts. BUTLER N.R., BLOOM J.S. and POZNANSKI D.
2010ApJ...719L.172S 16       D               1 150 10 Underlying global features of the X-ray light curves of Swift gamma-ray bursts. SHAO L., FAN Y.-Z. and WEI D.-M.
2010MNRAS.402.2429C 16       D               1 96 67 The X-ray absorbing column densities of Swift gamma-ray bursts. CAMPANA S., THONE C.C., DE UGARTE POSTIGO A., et al.
2009ApJ...707..328L 15       D               1 72 40 A comprehensive analysis of Swift/X-ray telescope data. IV. Single power-law decaying light curves versus canonical light curves and implications for a unified origin of X-rays. LIANG E.-W., LU H.-J., HOU S.-J., et al.
2009GCN..9430....1S 77 T                   1 1 GRB 090529: Swift detection of a burst. SAKAMOTO T., BARTHELMY S.D., BAUMGARTNER W.H., et al.
2009GCN..9431....1X 77 T                   1 0 GRB 090529: Xinglong TNT optical observation. XIN L.P., ZHENG W.K., URATA Y., et al.
2009GCN..9432....1H 77 T                   1 0 GRB 090529: preliminary Swift/UVOT upper limit. HOLLAND S.T., MARSHALL F.E., SCHADY P., et al.
2009GCN..9433....1O 77 T                   1 0 GRB 090529: enhanced Swift-XRT position. OSBORNE J.P., BEARDMORE A.P., EVANS P.A., et al.
2009GCN..9434....1M 77 T                   1 1 GRB 090529: Swift-BAT refined analysis. MARKWARDT C.B., BARTHELMY S.D., BAUMGARTNER W.H., et al.
2009GCN..9435....1S 77 T                   1 0 GRB090529: UVOT/Swift detection of a brightening optical afterglow. SCHADY P., SAKAMOTO T., HOLLAND S.T., et al.
2009GCN..9436....1K 77 T                   1 0 GRB 090529: TLS afterglow observations. KANN D.A., LAUX U. and STECKLUM B.
2009GCN..9437....1A 77 T                   1 1 GRB 090529: optical observations. ANDREEV M., SERGEEV A. and POZANENKO A.
2009GCN..9448....1G 77 T                   1 0 GRB 090529: OSN optical observations. GOROSABEL J., DE UGARTE POSTIGO A., ACEITUNO F.J., et al.
2009GCN..9449....1S 77 T                   1 0 GRB 090529: Swift-XRT refined analysis. SBARUFATTI B., MANGANO V. and SAKAMOTO T.
2009GCN..9453....1L 77 T                   1 0 GRB 090529: NOT optical observations. LELOUDAS G., MALESANI D., XU D., et al.
2009GCN..9457....1M 79 T                   1 5 GRB 090529: VLT spectroscopic redshift. MALESANI D., FYNBO J.P.U., D'ELIA V., et al.
2009GCN..9467....1Y 77 T                   1 0 GRB 090529: Mitsume optical observation. YOSHIDA M., KURODA D., YANAGISAWA K., et al.
2009GCN..9482....1X 78 T                   1 3 GRB090529: further NOT optical observations. XU D., LELOUDAS G., MALESANI D., et al.
2009GCN..9485....1B 77 T                   1 1 GRB. BALMAN S., PARMAKSIZOGLU M., EKER Z., et al.
2009GCN..9610....1A 77 T                   1 0 GRB 090529: Mt.Terskol optical observations. ANDREEV M., SERGEEV A. and POZANENKO A.
2009GCN..9611....1V 77 T                   1 1 GRB 090529: MTM-500 optical observations. VOLNOVA A., NAUMOV K., KOUPRIANOV V., et al.
2009GCN..9612....1S 77 T                   1 0 GRB 090529: CrAO optical upper limit. SHAKHOVKOY D., RUMYANTSEV V. and POZANENKO A.
2009MNRAS.400L..10W 43           X         1 3 28 High-redshift star formation rate up to z ∼ 8.3 derived from gamma-ray bursts and influence of background cosmology. WANG F.Y. and DAI Z.G.

goto View the references in ADS


2021.06.18-17:25:36

© Université de Strasbourg/CNRS

    • Contact