Kepler-36c , the SIMBAD biblio

Kepler-36c , the SIMBAD biblio (121 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.04.16CEST20:00:19


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2012Natur.486..375B viz 15       D               1 378 520 An abundance of small exoplanets around stars with a wide range of metallicities. BUCHHAVE L.A., LATHAM D.W., JOHANSEN A., et al.
2012ApJ...756..185F viz 15       D               1 1856 44 Transit timing observations from Kepler. V. Transit timing variation candidates in the first sixteen months from polynomial models. FORD E.B., RAGOZZINE D., ROWE J.F., et al.
2012ApJ...761...59L 84           X         2 21 311 How thermal evolution and mass-loss sculpt populations of super-earths and sub-neptunes: application to the Kepler-11 system and beyond. LOPEZ E.D., FORTNEY J.J. and MILLER N.
2011PASP..123..412W viz 15       D               1 2897 398 The Exoplanet Orbit Database. WRIGHT J.T., KAKHOURI O., MARCY G.W., et al.
2012A&A...548A..44C 137 22 A study of the performance of the transit detection tool DST in space-based surveys. Application of the CoRoT pipeline to Kepler data. CABRERA J., CSIZMADIA Sz., ERIKSON A., et al.
2013ApJS..204...24B viz 16       D               1 3274 922 Planetary candidates observed by Kepler. III. Analysis of the first 16 months of data. BATALHA N.M., ROWE J.F., BRYSON S.T., et al.
2013ApJ...765..132C 119       S   X         2 4 16 The quasiperiodic automated transit search algorithm. CARTER J.A. and AGOL E.
2013ApJ...767..127H viz 16       D               1 189 246 Fundamental properties of Kepler planet-candidate host stars using asteroseismology. HUBER D., CHAPLIN W.J., CHRISTENSEN-DALSGAARD J., et al.
2013A&A...552A.119S viz 16       D               1 1487 118 Magnetic energy fluxes in sub-Alfvenic planet star and moon planet interactions. SAUR J., GRAMBUSCH T., DULING S., et al.
2013ApJ...768..154D 78             C       1 27 22 Spitzer observations of GJ 3470 b: a very low-density neptune-size planet orbiting a metal-rich M dwarf. DEMORY B.-O., TORRES G., NEVES V., et al.
2013ApJ...770..131L 42           X         1 20 147 All six planets known to orbit Kepler-11 have low densities. LISSAUER J.J., JONTOF-HUTTER D., ROWE J.F., et al.
2013ApJ...772...74W 17       D               1 59 175 Density and eccentricity of Kepler planets. WU Y. and LITHWICK Y.
2013A&A...555A..58O viz 16       D               1 171 53 An independent planet search in the Kepler dataset. I. One hundred new candidates and revised Kepler objects of interest. OFIR A. and DREIZLER S.
2013ApJ...775...10V 143     A     X         4 18 123 Bulk composition of GJ 1214b and other sub-Neptune exoplanets. VALENCIA D., GUILLOT T., PARMENTIER V., et al.
2013ApJ...775...80F 4 22 189 A framework for characterizing the atmospheres of low-mass low-density transiting planets. FORTNEY J.J., MORDASINI C., NETTELMANN N., et al.
2013ApJ...776....2L 515           X C       12 21 372 The role of core mass in controlling evaporation: the Kepler radius distribution and the Kepler-36 density dichotomy. LOPEZ E.D. and FORTNEY J.J.
2013MNRAS.434.1883K 95       D     X         3 6 13 A simple, quantitative method to infer the minimum atmospheric height of small exoplanets. KIPPING D.M., SPIEGEL D.S. and SASSELOV D.D.
2013MNRAS.434.3018P 17       D               2 9 19 The formation of systems with closely spaced low-mass planets and the application to Kepler-36. PAARDEKOOPER S.-J., REIN H. and KLEY W.
2013MNRAS.435.2256Q 195           X C       4 7 11 Origin scenarios for the Kepler 36 planetary system. QUILLEN A.C., BODMAN E. and MOORE A.
2014ApJ...780...53C 19       D               1 25 157 Inside-out planet formation. CHATTERJEE S. and TAN J.C.
2014ApJS..210...19B viz 16       D               1 5860 211 Planetary candidates observed by Kepler IV: planet sample from Q1-Q8 (22 months). BURKE C.J., BRYSON S.T., MULLALLY F., et al.
2014A&A...561A..41A 80             C       1 16 33 On the radius of habitable planets. ALIBERT Y.
2014A&A...561A.103O 79             C       1 28 44 An independent planet search in the Kepler dataset. II. An extremely low-density super-earth mass planet around Kepler-87. OFIR A., DREIZLER S., ZECHMEISTER M., et al.
2014ApJ...783L...6W 19       D               1 66 499 The mass-radius relation for 65 exoplanets smaller than 4 earth radii. WEISS L.M. and MARCY G.W.
2014ApJ...783....4W viz 16       D               1 487 103 Influence of stellar multiplicity on planet formation. I. Evidence of suppressed planet formation due to stellar companions within 20 AU and validation of four planets from the Kepler multiple planet candidates. WANG J., XIE J.-W., BARCLAY T., et al.
2014ApJ...784...45R viz 16       D               1 1691 388 Validation of Kepler's multiple planet candidates. III. Light curve analysis and announcement of hundreds of new multi-planet systems. ROWE J.F., BRYSON S.T., MARCY G.W., et al.
2014ApJ...785...15J viz 40           X         1 33 105 Kepler-79's low density planets. JONTOF-HUTTER D., LISSAUER J.J., ROWE J.F., et al.
2014ApJ...786....2V viz 39           X         1 25 25 Transit confirmation and improved stellar and planet parameters for the super-Earth HD 97658 b and its host star. VAN GROOTEL V., GILLON M., VALENCIA D., et al.
2014MNRAS.439.3225L 43           X         1 8 72 Origin and loss of nebula-captured hydrogen envelopes from `sub'- to `super-Earths' in the habitable zone of Sun-like stars. LAMMER H., STOKL A., ERKAEV N.V., et al.
2014ApJ...787..173H 16       D               2 58 38 Mass-radius relations and core-envelope decompositions of super-earths and sub-neptunes. HOWE A.R., BURROWS A. and VERNE W.
2014ApJ...790...12B 79           X         2 32 37 Kepler-93b: a terrestrial world measured to within 120 km, and a test case for a new Spitzer observing mode. BALLARD S., CHAPLIN W.J., CHARBONNEAU D., et al.
2014ApJ...790...58N 395           X C       9 6 24 The effect of conjunctions on the transit timing variations of exoplanets. NESVORNY D. and VOKROUHLICKY D.
2014ApJ...791...35L viz 16       D               1 800 137 Robotic laser adaptive optics imaging of 715 Kepler exoplanet candidates using Robo-AO. LAW N.M., MORTON T., BARANEC C., et al.
2014ApJ...792....1L 21       D               1 45 511 Understanding the mass-radius relation for sub-neptunes: radius as a proxy for composition. LOPEZ E.D. and FORTNEY J.J.
2014Natur.513..336L 1 20 49 Advances in exoplanet science from Kepler. LISSAUER J.J., DAWSON R.I. and TREMAINE S.
2014Natur.513..358P 35 49 Instrumentation for the detection and characterization of exoplanets. PEPE F., EHRENREICH D. and MEYER M.R.
2014ApJ...795..167S viz 39           X         1 30 33 Planet hunters. VII. Discovery of a new low-mass, low-density planet (PH3 c) orbiting Kepler-289 with mass measurements of two additional planets (PH3 b and d). SCHMITT J.R., AGOL E., DECK K.M., et al.
2014ApJ...796...48Z viz 16       D               1 199 11 The ground-based H-, K-, and L-band absolute emission spectra of HD 209458b. ZELLEM R.T., GRIFFITH C.A., DEROO P., et al.
2015ApJS..217...16R viz 16       D               1 8625 149 Planetary candidates observed by Kepler. V. Planet sample from Q1-Q12 (36 months). ROWE J.F., COUGHLIN J.L., ANTOCI V., et al.
2015ApJ...808..126V 56       D     X         2 105 201 Eccentricity from transit photometry: small planets in Kepler multi-planet systems have low eccentricities. VAN EYLEN V. and ALBRECHT S.
2015ApJ...808..150H 119           X         3 18 21 Evolutionary models of super-Earths and mini-Neptunes incorporating cooling and mass loss. HOWE A.R. and BURROWS A.
2015ApJ...809....8B viz 16       D               1 112329 282 Terrestrial planet occurrence rates for the Kepler GK dwarf sample. BURKE C.J., CHRISTIANSEN J.L., MULLALLY F., et al.
2015ApJ...812..164L 186     A     X         5 6 43 Giant impact: an efficient mechanism for the devolatilization of super-earths. LIU S.-F., HORI Y., LIN D.N.C., et al.
2015ApJ...813..101V 161           X C       3 5 20 Tidally-driven roche-lobe overflow of hot jupiters with MESA. VALSECCHI F., RAPPAPORT S., RASIO F.A., et al.
2015MNRAS.452.1743T 183     A     X         5 8 6 Torque on an exoplanet from an anisotropic evaporative wind. TEYSSANDIER J., OWEN J.E., ADAMS F.C., et al.
2015MNRAS.453.1471D 43           X         1 8 63 A metallicity recipe for rocky planets. DAWSON R.I., CHIANG E. and LEE E.J.
2016MNRAS.456..119C 16       D               2 51 42 Rotation periods and seismic ages of KOIs - comparison with stars without detected planets from Kepler observations. CEILLIER T., VAN SADERS J., GARCIA R.A., et al.
2016ApJ...819L..10O 166 T K       X         3 3 15 The initial physical conditions of Kepler-36 b and c. OWEN J.E. and MORTON T.D.
2016ApJ...819...83W 42           X         1 23 55 Revised masses and densities of the planets around Kepler-10. WEISS L.M., ROGERS L.A., ISAACSON H.T., et al.
2016ApJ...820...39J 57       D     X         2 107 126 Secure mass measurements from transit timing: 10 Kepler exoplanets between 3 and 8 M with diverse densities and incident fluxes. JONTOF-HUTTER D., FORD E.B., ROWE J.F., et al.
2016ApJ...825...19W viz 18       D               1 99 221 Probabilistic mass-radius relationship for sub-Neptune-sized planets. WOLFGANG A., ROGERS L.A. and FORD E.B.
2016MNRAS.461.1841C 16       D               1 150 9 An upper boundary in the mass-metallicity plane of exo-Neptunes. COURCOL B., BOUCHY F. and DELEUIL M.
2016ApJ...831..180C 269       D     X C       6 10 120 Evolutionary analysis of gaseous sub-Neptune-mass planets with MESA. CHEN H. and ROGERS L.A.
2016AJ....152..158T viz 16       D               1 4387 37 Detection of potential transit signals in 17 quarters of Kepler data: results of the final Kepler mission transiting planet search (DR25). TWICKEN J.D., JENKINS J.M., SEADER S.E., et al.
2016AJ....152..181H viz 16       D               1 9279 22 SETI observations of exoplanets with the Allen Telescope Array. HARP G.R., RICHARDS J., TARTER J.C., et al.
2017AJ....153..191S viz 81               F     1 41 23 Detection of the atmosphere of the 1.6 M⊕ exoplanet GJ 1132 b. SOUTHWORTH J., MANCINI L., MADHUSUDHAN N., et al.
2017MNRAS.466.1868C viz 16       D               1 176 21 An overabundance of low-density Neptune-like planets. CUBILLOS P., ERKAEV N.V., JUVAN I., et al.
2017AJ....154....5H viz 16       D               1 231 145 Kepler planet masses and eccentricities from TTV analysis. HADDEN S. and LITHWICK Y.
2017MNRAS.468..469P 16       D               1 22 2 The reversibility error method (REM): a new, dynamical fast indicator for planetary dynamics. PANICHI F., GOZDZIEWSKI K. and TURCHETTI G.
2017ApJ...843..122Z 47           X         1 15 101 The cosmic shoreline: the evidence that escape determines which planets have atmospheres, and what this may mean for Proxima Centauri b. ZAHNLE K.J. and CATLING D.C.
2017AJ....154..108J viz 16       D               1 3237 137 The California-Kepler Survey. II. Precise physical properties of 2025 Kepler planets and their host stars. JOHNSON J.A., PETIGURA E.A., FULTON B.J., et al.
2017ApJ...847...29O 141           X         1 5 503 The evaporation valley in the Kepler planets. OWEN J.E. and WU Y.
2018AJ....155...48W viz 16       D               1 911 204 The California-Kepler survey. V. Peas in a pod: planets in a Kepler multi-planet system are similar in size and regularly spaced. WEISS L.M., MARCY G.W., PETIGURA E.A., et al.
2018ApJ...852...41H 207           X C       4 3 3 Outcomes of grazing impacts between sub-Neptunes in Kepler Multis. HWANG J., CHATTERJEE S., LOMBARDI J., et al.
2018ApJ...853...64D 16       D               1 23 10 Secondary atmospheres on HD 219134 b and c. DORN C. and HENG K.
2018ApJ...853..163J 19       D               1 57 202 Compositional imprints in Density-Distance-Time: a rocky composition for close-in low-mass exoplanets from the location of the valley of evaporation. JIN S. and MORDASINI C.
2018AJ....155..206A viz 16       D               3 183 5 Systematic search for rings around Kepler planet candidates: constraints on ring size and occurrence rate. AIZAWA M., MASUDA K., KAWAHARA H., et al.
2018MNRAS.476.2613S 82           X         2 3 1 A HARDCORE model for constraining an exoplanet's core size. SUISSA G., CHEN J. and KIPPING D.
2018ApJ...860..175W 42           X         1 3 4 Evaporation of low-mass planet atmospheres: multidimensional hydrodynamics with consistent thermochemistry. WANG L. and DAI F.
2018MNRAS.478.2480P 41           X         1 27 5 The architecture and formation of the Kepler-30 planetary system. PANICHI F., GOZDZIEWSKI K., MIGASZEWSKI C., et al.
2018AJ....156...95H 56           X         1 3 46 A criterion for the onset of chaos in systems of two eccentric planets. HADDEN S. and LITHWICK Y.
2018MNRAS.479L..81R 103           X         2 3 64 Migration-driven diversity of super-Earth compositions. RAYMOND S.N., BOULET T., IZIDORO A., et al.
2018MNRAS.479.5012O 73           X         1 4 128 Photoevaporation and high-eccentricity migration created the sub-Jovian desert. OWEN J.E. and LAI D.
2018ApJ...866...99B viz 16       D               1 7129 233 Revised radii of Kepler stars and planet's using Gaia Data Release 2. BERGER T.A., HUBER D., GAIDOS E., et al.
2018ApJ...866..104C 165           X C       3 33 14 Identifying inflated super-Earths and photo-evaporated cores. CARRERA D., FORD E.B., IZIDORO A., et al.
2018ApJ...868..138B 1056   K A     X C       25 5 11 New formation models for the Kepler-36 system. BODENHEIMER P., STEVENSON D.J., LISSAUER J.J., et al.
2018AJ....156..254W viz 16       D               2 1269 42 The California-Kepler Survey. VI. Kepler multis and singles have similar planet and stellar properties indicating a common origin. WEISS L.M., ISAACSON H.T., MARCY G.W., et al.
2018AJ....156..264F viz 16       D               1 1909 365 The California-Kepler Survey. VII. Precise planet radii leveraging Gaia DR2 reveal the stellar mass dependence of the Planet radius gap. FULTON B.J. and PETIGURA E.A.
2019MNRAS.482.4146D 17       D               1 19 8 Hidden planetary friends: on the stability of two-planet systems in the presence of a distant, inclined companion. DENHAM P., NAOZ S., HOANG B.-M., et al.
2019AJ....157..142G 168           X C       3 5 5 Prospects for refining Kepler TTV masses using TESS observations. GOLDBERG M., HADDEN S., PAYNE M.J., et al.
2019ApJ...875...29M viz 17       D               1 2918 72 A spectroscopic analysis of the California-Kepler Survey sample. I. Stellar parameters, planetary radii, and a slope in the radius gap. MARTINEZ C.F., CUNHA K., GHEZZI L., et al.
2019A&A...624A..38D viz 167           X C       3 21 2 So close, so different: characterization of the K2-36 planetary system with HARPS-N. DAMASSO M., ZENG L., MALAVOLTA L., et al.
2019AJ....157..171K viz 17       D               1 4069 2 Visual analysis and demographics of Kepler transit timing variations. KANE M., RAGOZZINE D., FLOWERS X., et al.
2019AJ....157..174O viz 17       D               1 176 61 Discovery of a third transiting planet in the Kepler-47 circumbinary system. OROSZ J.A., WELSH W.F., HAGHIGHIPOUR N., et al.
2019MNRAS.486.2780Y 84           X         2 5 ~ Atmospheric mass-loss from high-velocity giant impacts. YALINEWICH A. and SCHLICHTING H.
2019AJ....157..235C viz 17       D               2 415 7 Observations of the Kepler field with TESS: predictions for planet yield and observable features. CHRIST C.N., MONTET B.T. and FABRYCKY D.C.
2019ApJ...880L...1A viz 17       D               1 146 ~ A gap in the mass distribution for warm Neptune and terrestrial planets. ARMSTRONG D.J., MERU F., BAYLISS D., et al.
2019MNRAS.490.1509K 17       D               1 54 ~ Asteroseismic investigation of 20 planet and planet-candidate host stars. KAYHAN C., YILDIZ M. and CELIK ORHAN Z.
2020AJ....159...41T viz 17       D               1 564 ~ Estimating planetary mass with deep learning. TASKER E.J., LANEUVILLE M. and GUTTENBERG N.
2020MNRAS.491.3137K 170           X C       3 12 ~ Stability of exoplanetary systems retrieved from scalar time series. KOVACS T.
2020MNRAS.491.5287O viz 187       D     X C       4 127 43 Testing exoplanet evaporation with multitransiting systems. OWEN J.E. and CAMPOS ESTRADA B.
2020AJ....159..108V 640     A D     X C       15 21 41 Diffuser-assisted infrared transit photometry for four dynamically interacting Kepler systems. VISSAPRAGADA S., JONTOF-HUTTER D., SHPORER A., et al.
2020A&A...634A..43O 17       D               1 141 104 Revisited mass-radius relations for exoplanets below 120 M. OTEGI J.F., BOUCHY F. and HELLED R.
2020PASP..132e4401Z 17       D               1 81 38 Utilizing small telescopes operated by citizen scientists for transiting Exoplanet follow-up. ZELLEM R.T., PEARSON K.A., BLASER E., et al.
2020A&A...638A..52M 5 10 58 Planetary evolution with atmospheric photoevaporation. I. Analytical derivation and numerical study of the evaporation valley and transition from super-Earths to sub-Neptunes. MORDASINI C.
2020AJ....160..108B viz 17       D               1 6855 109 The Gaia-Kepler stellar properties catalog. II. Planet radius demographics as a function of stellar mass and age. BERGER T.A., HUBER D., GAIDOS E., et al.
2020ApJ...900..133V 43           X         1 2 ~ Giant planet formation models with a self-consistent treatment of the heavy elements. VALLETTA C. and HELLED R.
2020MNRAS.498.5030O 45           X         1 9 21 Constraining the entropy of formation from young transiting planet. OWEN J.E.
2020AJ....160..201C viz 17       D               1 31 22 A featureless infrared transmission spectrum for the super-puff planet Kepler-79d. CHACHAN Y., JONTOF-HUTTER D., KNUTSON H.A., et al.
2021ApJ...908..114Y 17       D               1 16 9 A simplified photodynamical model for planetary mass determination in low-eccentricity multitransiting systems. YOFFE G., OFIR A. and AHARONSON O.
2021MNRAS.501.4255R 871     A D     X C F     19 3 ~ Exploring the origin and evolution of the Kepler 36 system. RIMLINGER T. and HAMILTON D.
2021A&A...647A.175O 71           X         1 1 27 How planets grow by pebble accretion. III. Emergence of an interior composition gradient. ORMEL C.W., VAZAN A. and BROUWERS M.G.
2021MNRAS.503.1526R 89           X         1 2 91 Unveiling the planet population at birth. ROGERS J.G. and OWEN J.E.
2021MNRAS.503.2825H 17       D               1 79 ~ Implications of an improved water equation of state for water-rich planets. HUANG C., RICE D.R., GRANDE Z.M., et al.
2021A&A...648A..75S 132           X C       2 14 17 A sub-Neptune and a non-transiting Neptune-mass companion unveiled by ESPRESSO around the bright late-F dwarf HD 5278 (TOI-130). SOZZETTI A., DAMASSO M., BONOMO A.S., et al.
2021AJ....161..246J viz 17       D               9 204 12 Following up the Kepler field: masses of targets for transit timing and atmospheric characterization. JONTOF-HUTTER D., WOLFGANG A., FORD E.B., et al.
2021A&A...652A.110L 17       D               1 82 7 Why do more massive stars host larger planets? LOZOVSKY M., HELLED R., PASCUCCI I., et al.
2021MNRAS.507.2782O 45           X         1 11 16 TOI-431/HIP 26013: a super-Earth and a sub-Neptune transiting a bright, early K dwarf, with a third RV planet. OSBORN A., ARMSTRONG D.J., CALE B., et al.
2021ApJ...921...24S viz 17       D               1 328 1 The occurrence-weighted median planets discovered by transit surveys orbiting solar-type stars and their implications for planet formation and evolution. SCHLAUFMAN K.C. and HALPERN N.D.
2021ApJ...921..142C 17       D               1 15 4 On the importance of wave-planet interactions for the migration of two super-Earths embedded in a protoplanetary disk. CUI Z., PAPALOIZOU J.C.B. and SZUSZKIEWICZ E.
2021A&A...655A..30C 44           X         1 27 10 Irradiation-driven escape of primordial planetary atmospheres. I. The ATES photoionization hydrodynamics code. CALDIROLI A., HAARDT F., GALLO E., et al.
2021A&A...655A..66L viz 218           X C       4 12 9 Alleviating the transit timing variation bias in transit surveys. I. RIVERS: Method and detection of a pair of resonant super-Earths around Kepler-1705. LELEU A., CHATEL G., UDRY S., et al.
2021A&A...656A.157B 17       D               1 48 9 Constraining stellar rotation and planetary atmospheric evolution of a dozen systems hosting sub-Neptunes and super-Earths. BONFANTI A., FOSSATI L., KUBYSHKINA D., et al.
2022RAA....22g2003J 90               F     1 114 7 CHES: A Space-borne Astrometric Mission for the Detection of Habitable Planets of the Nearby Solar-type Stars. JI J.-H., LI H.-T., ZHANG J.-B., et al.
2022A&A...665A..12M 135           X C       2 3 5 Convective inhibition with an ocean. I. Supercritical cores on sub-Neptunes/super-Earths. MARKHAM S., GUILLOT T. and STEVENSON D.
2022A&A...667A...8N 45           X         1 12 1 The GAPS programme at TNG XL. A puffy and warm Neptune-sized planet and an outer Neptune-mass candidate orbiting the solar-type star TOI-1422. NAPONIELLO L., MANCINI L., DAMASSO M., et al.
2023MNRAS.519.6028R 625       D S   X C F     11 86 7 Exoplanet atmosphere evolution: emulation with neural networks. ROGERS J.G., MUNOZ C.J., OWEN J.E., et al.
2023RAA....23f5005B 19       D               1 60 ~ Relation between Mass and Radius of Exoplanets Distinguished by their Density. BETZLER A.S. and MIRANDA J.G.V.
2023A&A...676A.106B viz 19       D               2 76 ~ ExoMDN: Rapid characterization of exoplanet interior structures with mixture density networks. BAUMEISTER P. and TOSI N.
2023A&A...676L...8V 19       D               1 10 ~ Rocky sub-Neptunes formed by pebble accretion: Rain of rock from polluted envelopes. VAZAN A. and ORMEL C.W.
2024ApJS..270....8W 70       D     X         2 246 ~ The Kepler Giant Planet Search. I. A Decade of Kepler Planet-host Radial Velocities from W. M. Keck Observatory. WEISS L.M., ISAACSON H., HOWARD A.W., et al.

goto View the references in ADSLimited to 100