Kepler-48c , the SIMBAD biblio

Kepler-48c , the SIMBAD biblio (62 results) C.D.S. - SIMBAD4 rel 1.8 - 2023.01.28CET19:01:42


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2012Natur.486..375B viz 16       D               1 378 334 An abundance of small exoplanets around stars with a wide range of metallicities. BUCHHAVE L.A., LATHAM D.W., JOHANSEN A., et al.
2012ApJ...756..185F viz 16       D               1 1856 44 Transit timing observations from Kepler. V. Transit timing variation candidates in the first sixteen months from polynomial models. FORD E.B., RAGOZZINE D., ROWE J.F., et al.
2013ApJS..204...24B viz 16       D               1 3274 779 Planetary candidates observed by Kepler. III. Analysis of the first 16 months of data. BATALHA N.M., ROWE J.F., BRYSON S.T., et al.
2013A&A...552A.119S viz 16       D               1 1487 42 Magnetic energy fluxes in sub-Alfvenic planet star and moon planet interactions. SAUR J., GRAMBUSCH T., DULING S., et al.
2013ApJ...770...69P viz 16       D               1 245 158 A plateau in the planet population below twice the size of Earth. PETIGURA E.A., MARCY G.W. and HOWARD A.W.
2013ApJ...775...34O 55       D     X         2 89 24 Condition for capture into first-order mean motion resonances and application to constraints on the origin of resonant systems. OGIHARA M. and KOBAYASHI H.
2013ApJ...775...53H 16       D               1 93 126 Testing in situ assembly with the Kepler planet candidate sample. HANSEN B.M.S. and MURRAY N.
2013ApJS..208...22X viz 16       D               3 29 44 Transit timing variation of near-resonance planetary pairs: confirmation of 12 multiple-planet systems. XIE J.-W.
2014ApJS..210...19B viz 16       D               1 5860 162 Planetary candidates observed by Kepler IV: planet sample from Q1-Q8 (22 months). BURKE C.J., BRYSON S.T., MULLALLY F., et al.
2014ApJS..210...20M viz 255       D     X C       6 94 251 Masses, radii, and orbits of small Kepler planets: the transition from gaseous to rocky planets. MARCY G.W., ISAACSON H., HOWARD A.W., et al.
2014ApJ...783L...6W 18       D               1 66 288 The mass-radius relation for 65 exoplanets smaller than 4 earth radii. WEISS L.M. and MARCY G.W.
2014ApJ...783....4W viz 16       D               1 487 55 Influence of stellar multiplicity on planet formation. I. Evidence of suppressed planet formation due to stellar companions within 20 AU and validation of four planets from the Kepler multiple planet candidates. WANG J., XIE J.-W., BARCLAY T., et al.
2014ApJ...784...45R viz 16       D               1 1691 227 Validation of Kepler's multiple planet candidates. III. Light curve analysis and announcement of hundreds of new multi-planet systems. ROWE J.F., BRYSON S.T., MARCY G.W., et al.
2014ApJ...787...80H viz 16       D               2 261 93 Densities and eccentricities of 139 Kepler planets from transit time variations. HADDEN S. and LITHWICK Y.
2014ApJ...787..173H 95       D     X         3 58 38 Mass-radius relations and core-envelope decompositions of super-earths and sub-neptunes. HOWE A.R., BURROWS A. and VERNE W.
2014ApJ...790..146F viz 16       D               1 918 322 Architecture of Kepler's multi-transiting systems. II. New investigations with twice as many candidates. FABRYCKY D.C., LISSAUER J.J., RAGOZZINE D., et al.
2014Natur.513..328M 25 38 Doppler spectroscopy as a path to the detection of Earth-like planets. MAYOR M., LOVIS C. and SANTOS N.C.
2014ApJ...796...48Z viz 16       D               1 199 11 The ground-based H-, K-, and L-band absolute emission spectra of HD 209458b. ZELLEM R.T., GRIFFITH C.A., DEROO P., et al.
2014A&A...572A..51F 95       D       C       2 111 15 Revisiting the correlation between stellar activity and planetary surface gravity. FIGUEIRA P., OSHAGH M., ADIBEKYAN V.Z., et al.
2015ApJ...801...41R 85           X         2 52 280 Most 1.6 Earth-radius planets are not rocky. ROGERS L.A.
2015ApJS..217...16R viz 16       D               1 8625 84 Planetary candidates observed by Kepler. V. Planet sample from Q1-Q12 (36 months). ROWE J.F., COUGHLIN J.L., ANTOCI V., et al.
2015ApJ...806..183W viz 16       D               1 223 89 How rocky are they? the composition distribution of Kepler's Sub-Neptune planet candidates within 0.15 AU. WOLFGANG A. and LOPEZ E.
2015ApJ...809...77S viz 103             C       1 11 262 The Transiting Exoplanet Survey Satellite: simulations of planet detections and astrophysical false positives. SULLIVAN P.W., WINN J.N., BERTA-THOMPSON Z.K., et al.
2015MNRAS.453.4089S 16       D               1 103 3 Tides alone cannot explain Kepler planets close to 2:1 MMR. SILBURT A. and REIN H.
2016ApJ...816...95G 43           X         1 10 28 The Kepler-454 system: a small, not-rocky inner planet, a jovian world, and a distant companion. GETTEL S., CHARBONNEAU D., DRESSING C.D., et al.
2016ApJ...820...39J 16       D               1 107 48 Secure mass measurements from transit timing: 10 Kepler exoplanets between 3 and 8 M with diverse densities and incident fluxes. JONTOF-HUTTER D., FORD E.B., ROWE J.F., et al.
2016ApJ...824..103F 41           X         1 14 5 Solubility of rock in steam atmospheres of planets. FEGLEY B., JACOBSON N.S., WILLIAMS K.B., et al.
2016ApJ...825...19W viz 16       D               1 99 95 Probabilistic mass-radius relationship for sub-Neptune-sized planets. WOLFGANG A., ROGERS L.A. and FORD E.B.
2016MNRAS.461.1841C 16       D               1 150 9 An upper boundary in the mass-metallicity plane of exo-Neptunes. COURCOL B., BOUCHY F. and DELEUIL M.
2016AJ....152..158T viz 16       D               1 4387 18 Detection of potential transit signals in 17 quarters of Kepler data: results of the final Kepler mission transiting planet search (DR25). TWICKEN J.D., JENKINS J.M., SEADER S.E., et al.
2017ApJ...834...17C viz 16       D               1 289 84 Probabilistic forecasting of the masses and radii of other worlds. CHEN J. and KIPPING D.
2017MNRAS.466.1868C viz 16       D               1 176 16 An overabundance of low-density Neptune-like planets. CUBILLOS P., ERKAEV N.V., JUVAN I., et al.
2017AJ....154....5H viz 16       D               1 231 38 Kepler planet masses and eccentricities from TTV analysis. HADDEN S. and LITHWICK Y.
2017MNRAS.469..171R 82           X         2 12 5 Transit probabilities in secularly evolving planetary systems. READ M.J., WYATT M.C. and TRIAUD A.H.M.J.
2017AJ....154..108J viz 16       D               1 3237 46 The California-Kepler Survey. II. Precise physical properties of 2025 Kepler planets and their host stars. JOHNSON J.A., PETIGURA E.A., FULTON B.J., et al.
2017AJ....154..109F viz 16       D               1 900 317 The California-Kepler Survey. III. A gap in the radius distribution of small planets. FULTON B.J., PETIGURA E.A., HOWARD A.W., et al.
2017AJ....154..236W 16       D               1 34 4 Near mean-motion resonances in the system observed by Kepler: affected by mass accretion and Type I migration. WANG S. and JI J.
2018AJ....155...48W viz 17       D               1 911 22 The California-Kepler survey. V. Peas in a pod: planets in a Kepler multi-planet system are similar in size and regularly spaced. WEISS L.M., MARCY G.W., PETIGURA E.A., et al.
2018ApJ...853..163J 17       D               1 57 32 Compositional imprints in Density-Distance-Time: a rocky composition for close-in low-mass exoplanets from the location of the valley of evaporation. JIN S. and MORDASINI C.
2018AJ....155..161Z viz 17       D               1 1274 10 Robo-AO Kepler survey. IV. The effect of nearby stars on 3857 planetary candidate systems. ZIEGLER C., LAW N.M., BARANEC C., et al.
2018AJ....155..206A viz 17       D               3 183 ~ Systematic search for rings around Kepler planet candidates: constraints on ring size and occurrence rate. AIZAWA M., MASUDA K., KAWAHARA H., et al.
2018ApJ...866...99B viz 17       D               1 7129 101 Revised radii of Kepler stars and planet's using Gaia Data Release 2. BERGER T.A., HUBER D., GAIDOS E., et al.
2018AJ....156..254W viz 17       D               2 1269 ~ The California-Kepler Survey. VI. Kepler multis and singles have similar planet and stellar properties indicating a common origin. WEISS L.M., ISAACSON H.T., MARCY G.W., et al.
2018AJ....156..264F viz 17       D               1 1909 112 The California-Kepler Survey. VII. Precise planet radii leveraging Gaia DR2 reveal the stellar mass dependence of the Planet radius gap. FULTON B.J. and PETIGURA E.A.
2019A&A...623A.165E 170             C F     2 19 ~ HD 219666 b: a hot-Neptune from TESS Sector 1. ESPOSITO M., ARMSTRONG D.J., GANDOLFI D., et al.
2019RAA....19...41G viz 17       D               1 1982 ~ Transit timing variations and linear ephemerides of confirmed Kepler transiting exoplanets. GAJDOS P., VANKO M. and PARIMUCHA S.
2019ApJ...875...29M viz 17       D               1 2918 ~ A spectroscopic analysis of the California-Kepler Survey sample. I. Stellar parameters, planetary radii, and a slope in the radius gap. MARTINEZ C.F., CUNHA K., GHEZZI L., et al.
2019AJ....157..171K viz 17       D               1 4069 ~ Visual analysis and demographics of Kepler transit timing variations. KANE M., RAGOZZINE D., FLOWERS X., et al.
2019AJ....157..174O viz 17       D               1 176 ~ Discovery of a third transiting planet in the Kepler-47 circumbinary system. OROSZ J.A., WELSH W.F., HAGHIGHIPOUR N., et al.
2019ApJ...880L...1A viz 17       D               1 146 ~ A gap in the mass distribution for warm Neptune and terrestrial planets. ARMSTRONG D.J., MERU F., BAYLISS D., et al.
2020AJ....159...41T viz 17       D               1 564 ~ Estimating planetary mass with deep learning. TASKER E.J., LANEUVILLE M. and GUTTENBERG N.
2020A&A...634A..43O 17       D               1 141 ~ Revisited mass-radius relations for exoplanets below 120 M. OTEGI J.F., BOUCHY F. and HELLED R.
2020AJ....159..239G viz 17       D               1 1408 ~ Updated parameters and a new transmission spectrum of HD 97658b. GUO X., CROSSFIELD I.J.M., DRAGOMIR D., et al.
2020MNRAS.496.1149L 44           X         1 12 ~ Flyby encounters between two planetary systems II: exploring the interactions of diverse planetary system architectures. LI D., MUSTILL A.J. and DAVIES M.B.
2020AJ....160..108B viz 17       D               1 6855 ~ The Gaia-Kepler stellar properties catalog. II. Planet radius demographics as a function of stellar mass and age. BERGER T.A., HUBER D., GAIDOS E., et al.
2021MNRAS.503.2825H 18       D               1 79 ~ Implications of an improved water equation of state for water-rich planets. HUANG C., RICE D.R., GRANDE Z.M., et al.
2021A&A...649L...5B 18       D               2 41 ~ Dry or water world? How the water contents of inner sub-Neptunes constrain giant planet formation and the location of the water ice line. BITSCH B., RAYMOND S.N., BUCHHAVE L.A., et al.
2021ApJ...921...24S 18       D               1 328 ~ The occurrence-weighted median planets discovered by transit surveys orbiting solar-type stars and their implications for planet formation and evolution. SCHLAUFMAN K.C. and HALPERN N.D.
2021A&A...656A.157B 18       D               1 48 ~ Constraining stellar rotation and planetary atmospheric evolution of a dozen systems hosting sub-Neptunes and super-Earths. BONFANTI A., FOSSATI L., KUBYSHKINA D., et al.
2022ApJ...924....9H 47           X         1 17 ~ Sculpting the sub-Saturn occurrence rate via atmospheric mass loss. HALLATT T. and LEE E.J.
2022MNRAS.511.1043W viz 47           X         1 32 ~ A pair of sub-Neptunes transiting the bright K-dwarf TOI-1064 characterized with CHEOPS. WILSON T.G., GOFFO E., ALIBERT Y., et al.
2022RAA....22g2003J 93               F     1 114 ~ CHES: A Space-borne Astrometric Mission for the Detection of Habitable Planets of the Nearby Solar-type Stars. JI J.-H., LI H.-T., ZHANG J.-B., et al.

goto View the references in ADS


2023.01.28-19:01:42

© Université de Strasbourg/CNRS

    • Contact