LSQ 14mo , the SIMBAD biblio

LSQ 14mo , the SIMBAD biblio (44 results) C.D.S. - SIMBAD4 rel 1.7 - 2021.12.03CET21:33:06


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2021ApJ...908..217S 47           X         1 13 ~ Two-dimensional radiation-hydrodynamic simulations of supernova ejecta with a central power source. SUZUKI A. and MAEDA K.
2021ApJ...909...24K 112       D     X         3 93 ~ Photospheric velocity gradients and ejecta masses of hydrogen-poor superluminous supernovae: proxies for distinguishing between fast and slow events. KONYVES-TOTH R. and VINKO J.
2021ApJ...912...21E 299       D S   X         6 125 ~ Late-time radio and millimeter observations of superluminous supernovae and long gamma-ray bursts: implications for central engines, fast radio bursts, and obscured star formation. EFTEKHARI T., MARGALIT B., OMAND C.M.B., et al.
2021MNRAS.500.5142F 19       D               1 114 ~ From core collapse to superluminous: the rates of massive stellar explosions from the Palomar Transient Factory. FROHMAIER C., ANGUS C.R., VINCENZI M., et al.
2021MNRAS.502.1678K 93           X         2 51 ~ SN 2020ank: a bright and fast-evolving H-deficient superluminous supernova. KUMAR A., KUMAR B., PANDEY S.B., et al.
2021MNRAS.504.2535I 19       D               1 31 ~ The first Hubble diagram and cosmological constraints using superluminous supernovae. INSERRA C., SULLIVAN M., ANGUS C.R., et al.
2020ApJ...894..154S 134           X         3 8 ~ Late-phase spectropolarimetric observations of superluminous supernova SN 2017egm to probe the geometry of the inner ejecta. SAITO S., TANAKA M., MORIYA T.J., et al.
2020ApJ...897..114B 18       D               1 67 ~ The pre-explosion mass distribution of hydrogen-poor superluminous supernova progenitors and new evidence for a mass-spin correlation. BLANCHARD P.K., BERGER E., NICHOLL M., et al.
2020ApJ...904...74G 18       D               1 145 ~ FLEET: a redshift-agnostic machine learning pipeline to rapidly identify hydrogen-poor superluminous supernovae. GOMEZ S., BERGER E., BLANCHARD P.K., et al.
2020MNRAS.498.3730M 45           X         1 11 ~ Polarimetry of the superluminous transient ASASSN-15lh. MAUND J.R., LELOUDAS G., MALESANI D.B., et al.
2019ApJ...874...68C 61       D     X         2 32 ~ A systematic study of superluminous supernova light-curve models using clustering. CHATZOPOULOS E. and TUMINELLO R.
2019ApJ...875..121L 131           X         3 4 ~ Imaging polarimetry of the Type I superluminous supernova 2018hti. LEE C.-H.
2019MNRAS.482.4057M 87           X         2 7 ~ RINGO3 polarimetry of the Type I superluminous SN 2017egm. MAUND J.R., STEELE I., JERMAK H., et al.
2018A&A...611A..45R 85           X         2 47 6 Search for γ-ray emission from superluminous supernovae with the Fermi-LAT. RENAULT-TINACCI N., KOTERA K., NERONOV A., et al.
2018A&A...620A..67A 213           X C       4 25 ~ A nearby super-luminous supernova with a long pre-maximum & "plateau" and strong C II features. ANDERSON J.P., PESSI P.J., DESSART L., et al.
2018ApJ...852...81L viz 43           X         1 32 24 Hydrogen-poor superluminous supernovae from the Pan-STARRS1 Medium Deep Survey. LUNNAN R., CHORNOCK R., BERGER E., et al.
2018ApJ...853...57B 213           X C       4 27 23 Gaia17biu/SN 2017egm in NGC 3191: the closest hydrogen-poor superluminous supernova to date is in a "normal," massive, metal-rich spiral galaxy. BOSE S., DONG S., PASTORELLO A., et al.
2018ApJ...854..175I 17       D               1 48 6 A statistical approach to identify superluminous supernovae and probe their diversity. INSERRA C., PRAJS S., GUTIERREZ C.P., et al.
2018ApJ...858..115A 43           X         1 5 4 Related progenitor models for long-duration gamma-ray bursts and Type Ic superluminous supernovae. AGUILERA-DENA D.R., LANGER N., MORIYA T.J., et al.
2018ApJ...864...45M viz 102       D     X         3 37 18 Results from a systematic survey of X-ray emission from hydrogen-poor superluminous SNe. MARGUTTI R., CHORNOCK R., METZGER B.D., et al.
2018ApJ...866L..24N 43           X         1 11 1 One thousand days of SN2015bn: HST imaging shows a light curve flattening consistent with magnetar predictions. NICHOLL M., BLANCHARD P.K., BERGER E., et al.
2018ApJ...867..113M 17       D               2 37 ~ Systematic investigation of the fallback accretion-powered model for hydrogen-poor superluminous supernovae. MORIYA T.J., NICHOLL M. and GUILLOCHON J.
2018ApJ...867L..31C 85           X         2 16 ~ SN 2017ens: the metamorphosis of a luminous broadlined Type Ic supernova into an SN IIn. CHEN T.-W., INSERRA C., FRASER M., et al.
2018ApJ...869..166V 17       D               1 58 ~ Superluminous supernovae in LSST: rates, detection metrics, and light-curve modeling. VILLAR V.A., NICHOLL M. and BERGER E.
2018MNRAS.473.1258S 17       D               2 75 37 Cosmic evolution and metal aversion in superluminous supernova host galaxies. SCHULZE S., KRUHLER T., LELOUDAS G., et al.
2018MNRAS.475.1046I 44           X         1 23 41 On the nature of hydrogen-rich superluminous supernovae. INSERRA C., SMARTT S.J., GALL E.E.E., et al.
2018MNRAS.478..110S 43           X         1 16 ~ Broad-band emission properties of central engine-powered supernova ejecta interacting with a circumstellar medium. SUZUKI A. and MAEDA K.
2018MNRAS.479.4984C 85           X         2 10 ~ Testing the magnetar scenario for superluminous supernovae with circular polarimetry. CIKOTA A., LELOUDAS G., BULLA M., et al.
2017A&A...602A...9C 4791 T K A S   X C       112 25 28 The evolution of superluminous supernova
LSQ14mo and its interacting host galaxy system.
CHEN T.-W., NICHOLL M., SMARTT S.J., et al.
2017ApJ...837L..14L 254           X         6 4 14 Time-resolved polarimetry of the superluminous SN 2015bn with the Nordic Optical Telescope. LELOUDAS G., MAUND J.R., GAL-YAM A., et al.
2017ApJ...840...12Y 17       D               3 38 21 A statistical study of superluminous supernovae using the magnetar engine model and implications for their connection with gamma-ray bursts and hypernovae. YU Y.-W., ZHU J.-P., LI S.-Z., et al.
2017ApJ...842...26L 309       D     X C       7 26 15 A Monte Carlo approach to magnetar-powered transients. I. Hydrogen-deficient superluminous supernovae. LIU L.-D., WANG S.-Q., WANG L.-J., et al.
2017ApJ...845...85L viz 100       D     X         3 47 35 Analyzing the largest spectroscopic data set of hydrogen-poor super-luminous supernovae. LIU Y.-Q., MODJAZ M. and BIANCO F.B.
2017ApJ...850...55N 17       D               2 41 37 The magnetar model for Type I superluminous supernovae. I. Bayesian analysis of the full multicolor light-curve sample with MOSFiT. NICHOLL M., GUILLOCHON J. and BERGER E.
2017ApJ...851...95S 17       D               1 24 13 Magnetar-powered superluminous supernovae must first be exploded by jets. SOKER N. and GILKIS A.
2017MNRAS.464.3568P 43           X         1 25 31 The volumetric rate of superluminous supernovae at z ∼ 1. PRAJS S., SULLIVAN M., SMITH M., et al.
2017MNRAS.469.4705C 43           X         1 6 6 Spatially resolved analysis of superluminous supernovae PTF 11hrq and PTF 12dam host galaxies. CIKOTA A., DE CIA A., SCHULZE S., et al.
2017MNRAS.470.3566C 436       D     X   F     10 22 37 Superluminous supernova progenitors have a half-solar metallicity threshold. CHEN T.-W., SMARTT S.J., YATES R.M., et al.
2016A&A...596A..67R 41           X         1 60 9 SN 2012aa: A transient between Type Ibc core-collapse and superluminous supernovae. ROY R., SOLLERMAN J., SILVERMAN J.M., et al.
2016ApJ...828....3B viz 42           X         1 15 22 ASASSN-15lh: a superluminous ultraviolet rebrightening observed by Swift and Hubble. BROWN P.J., YANG Y., COOKE J., et al.
2016ApJ...831...79I 456       S   X         10 11 35 Spectropolarimetry of superluminous supernovae: insight into their geometry. INSERRA C., BULLA M., SIM S.A., et al.
2015ApJ...815L..10L 1977 T K A     X C       47 7 21 Polarimetry of the superluminous supernova LSQ14mo: no evidence for significant deviations from spherical symmetry. LELOUDAS G., PATAT F., MAUND J.R., et al.
2015MNRAS.452.3869N 261   K   D S   X         6 55 86 On the diversity of superluminous supernovae: ejected mass as the dominant factor. NICHOLL M., SMARTT S.J., JERKSTRAND A., et al.
2014ATel.5839....1L 81           X         2 3 4 PESSTO spectroscopic classification of optical transients. LELOUDAS G., ERGON M., TADDIA F., et al.

goto View the references in ADS


2021.12.03-21:33:07

© Université de Strasbourg/CNRS

    • Contact