SN 2010gx , the SIMBAD biblio

SN 2010gx , the SIMBAD biblio (158 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.04.25CEST08:09:37


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2010ApJ...724L..16P 1709   K A S   X C       43 13 223 Ultra-bright optical transients are linked with type IC supernovae. PASTORELLO A., SMARTT S.J., BOTTICELLA M.T., et al.
2011ApJ...727...15N 93       D     X         3 34 133 The extreme hosts of extreme supernovae. NEILL J.D., SULLIVAN M., GAL-YAM A., et al.
2011ApJ...729L...6C 85     A     X         2 7 339 Shock breakout in dense mass loss: luminous supernovae. CHEVALIER R.A. and IRWIN C.M.
2011ApJ...729..143C viz 39           X         1 27 54 SN 2008am: a super-luminous type IIn supernova. CHATZOPOULOS E., WHEELER J.C., VINKO J., et al.
2011ApJ...730...34S 500   K A D     X C       13 33 101 SN 2010jl in UGC 5189: yet another luminous type IIn supernova in a metal-poor galaxy. STOLL R., PRIETO J.L., STANEK K.Z., et al.
2011Natur.474..484Q viz 11 ~ Hydrogen-poor superluminous stellar explosions. QUIMBY R.M., KULKARNI S.R., KASLIWAL M.M., et al.
2011A&A...532A..29M 38           X         1 48 5 The discovery and classification of 16 supernovae at high redshifts in ELAIS-S1. The Stockholm VIMOS Supernova Survey II. MELINDER J., DAHLEN T., MENCIA-TRINCHANT L., et al.
2011ApJ...743..114C 1287       D     X C       33 17 166 Pan-STARRS1 discovery of two ultraluminous supernovae at z ~ 0.9. CHOMIUK L., CHORNOCK R., SODERBERG A.M., et al.
2011BASI...39..375K 30 7 Transients in the local universe: systematically bridging the gap between novae and supernovae. KASLIWAL M.M.
2010CBET.2413....1P 38 T       O X         4 3 Supernova 2010gx. PASTORELLO A., SMARTT S.J., BOTTICELLA M.T., et al.
2012A&A...538A.120L viz 15       D               1 5598 37 A unified supernova catalogue. LENNARZ D., ALTMANN D. and WIEBUSCH C.
2012ApJ...749L..28V 40           X         1 19 53 A spectroscopically normal type IC supernova from a very massive progenitor. VALENTI S., TAUBENBERGER S., PASTORELLO A., et al.
2012MNRAS.422.2675T 388           X C       9 15 42 Detectability of high-redshift superluminous supernovae with upcoming optical and near-infrared surveys. TANAKA M., MORIYA T.J., YOSHIDA N., et al.
2012A&A...541A.129L 83           X         2 10 130 SN 2006oz: rise of a super-luminous supernova observed by the SDSS-II SN survey. LELOUDAS G., CHATZOPOULOS E., DILDAY B., et al.
2010ATel.2490....1M 21 7 Supernova Candidates and Classifications from CRTS. MAHABAL A.A., DRAKE A.J., DJORGOVSKI S.G., et al.
2010ATel.2492....1Q 78 T                   1 2 8 Discovery of a luminous supernova,
PTF10cwr.
QUIMBY R.M., KULKARNI S.R., OFEK E., et al.
2010ATel.2504....1P 76 T                   1 3 4 Detection of
PTF10cwr/CSS100313 on PS1 sky survey images and host galaxy identification.
PASTORELLO A., SMARTT S.J., YOUNG D., et al.
2012ApJ...756..184S 39           X         1 27 40 SN 2010ay is a luminous and broad-lined type IC supernova within a low-metallicity host galaxy. SANDERS N.E., SODERBERG A.M., VALENTI S., et al.
2012Sci...337..927G 7 31 493 Luminous supernovae. GAL-YAM A.
2012A&A...544A..81H viz 15       D               1 7232 67 Supernovae and their host galaxies. I. The SDSS DR8 database and statistics. HAKOBYAN A.A., ADIBEKYAN V.Zh., ARAMYAN L.S., et al.
2012ApJ...757..178G 653   K A S   X C       15 5 117 Superluminous light curves from supernovae exploding in a dense wind. GINZBURG S. and BALBERG S.
2012Natur.491..228C viz 9 7 139 Superluminous supernovae at redshifts of 2.05 and 3.90. COOKE J., SULLIVAN M., GAL-YAM A., et al.
2012ApJ...760L..11U 155           X C       3 16 2 Unusual long and luminous optical transient in the Subaru deep field. URATA Y., TSAI P.P., HUANG K., et al.
2013ApJ...763...42O viz 211       D     X C       5 43 52 X-ray emission from supernovae in dense circumstellar matter environments: a search for collisionless shocks. OFEK E.O., FOX D., CENKO S.B., et al.
2013ApJ...763L..28C 1351 T K A     X C       33 10 57 The host galaxy of the super-luminous
SN 2010gx and limits on explosive 56Ni production.
CHEN T.-W., SMARTT S.J., BRESOLIN F., et al.
2013MNRAS.431..912Q 97       D       C       2 25 151 Rates of superluminous supernovae at z ∼ 0.2. QUIMBY R.M., YUAN F., AKERLOF C., et al.
2013ApJ...767..162C 195           X C       4 26 45 PS1-10afx at z = 1.388: Pan-STARRS1 discovery of a new type of superluminous supernova. CHORNOCK R., BERGER E., REST A., et al.
2013ApJ...770..128I 2074     A D     X C       53 23 332 Super-luminous type IC supernovae: catching a magnetar by the tail. INSERRA C., SMARTT S.J., JERKSTRAND A., et al.
2013ApJ...771...97L 899           X C       22 15 70 PS1-10bzj: a fast, hydrogen-poor superluminous supernova in a metal-poor host galaxy. LUNNAN R., CHORNOCK R., BERGER E., et al.
2013ApJ...771..136L 94       D       C       4 23 37 Superluminous x-rays from a superluminous supernova. LEVAN A.J., READ A.M., METZGER B.D., et al.
2013ApJ...773...76C 822     A D S   X C       20 23 177 Analytical light curve models of superluminous supernovae: χ2-minimization of parameter fits. CHATZOPOULOS E., WHEELER J.C., VINKO J., et al.
2013A&A...558A.143T 39           X         1 33 23 A metallicity study of 1987A-like supernova host galaxies. TADDIA F., SOLLERMAN J., RAZZA A., et al.
2013ApJ...779...98H 120           X         3 12 76 Two superluminous supernovae from the early universe discovered by the supernova legacy survey. HOWELL D.A., KASEN D., LIDMAN C., et al.
2014ApJ...780...44C 241           X C       5 17 183 The ultraviolet-bright, slowly declining transient PS1-11af as a partial tidal disruption event. CHORNOCK R., BERGER E., GEZARI S., et al.
2014MNRAS.437..656M viz 371       D     X C       9 19 62 The superluminous supernova PS1-11ap: bridging the gap between low and high redshift. McCRUM M., SMARTT S.J., KOTAK R., et al.
2013Natur.502..346N 18 6 221 Slowly fading super-luminous supernovae that are not pair-instability explosions. NICHOLL M., SMARTT S.J., JERKSTRAND A., et al.
2014AJ....147..118R 354           X   F     8 59 117 Absolute-magnitude distributions of supernovae. RICHARDSON D., JENKINS III R.L., WRIGHT J., et al.
2014ApJ...787..138L 294       D     X C       7 32 225 Hydrogen-poor superluminous supernovae and long-duration gamma-ray bursts have similar host galaxies. LUNNAN R., CHORNOCK R., BERGER E., et al.
2014A&A...565A..70K 237           X C       5 14 50 Observational properties of low-redshift pair instability supernovae. KOZYREVA A., BLINNIKOV S., LANGER N., et al.
2014MNRAS.441..289B 198           X   F     4 21 56 The supernova CSS121015:004244+132827: a clue for understanding superluminous supernovae. BENETTI S., NICHOLL M., CAPPELLARO E., et al.
2012ATel.3918....1S 77           X         2 5 5 PS1-12fo (=CSS120121): luminous Ic supernova at z=0.175 in the PS1 3Pi survey. SMARTT S.J., WRIGHT D., VALENTI S., et al.
2011ATel.3343....1D 77           X         2 4 6 Three blue optical transients from CRTS. DRAKE A.J., DJORGOVSKI S.G., MAHABAL A.A., et al.
2012ATel.3925....1M 39           X         1 2 2 Swift observation of PS1-12fo (=CSS120121). MARGUTTI R., SODERBERG A., CHOMIUK L., et al.
2014ApJ...795..142G viz 16       D               1 448 7 Defining photometric peculiar type Ia supernovae. GONZALEZ-GAITAN S., HSIAO E.Y., PIGNATA G., et al.
2014ApJ...796...87I 607       D S   X C       14 28 79 Superluminous supernovae as standardizable candles and high-redshift distance probes. INSERRA C. and SMARTT S.J.
2014MNRAS.444.2096N 436           X C       10 17 135 Superluminous supernovae from PESSTO. NICHOLL M., SMARTT S.J., JERKSTRAND A., et al.
2014ApJ...797...24V viz 95       D       C       3 20 71 The hydrogen-poor superluminous supernova iPTF 13ajg and its host galaxy in absorption and emission. VREESWIJK P.M., SAVAGLIO S., GAL-YAM A., et al.
2015ApJ...798...12V 80             C       1 19 63 A luminous, fast rising UV-transient discovered by ROTSE: a tidal disruption event? VINKO J., YUAN F., QUIMBY R.M., et al.
2015ApJ...799..107W 740   K A S   X C       17 15 47 Superluminous supernovae powered by magnetars: late-time light curves and hard emission leakage. WANG S.Q., WANG L.J., DAI Z.G., et al.
2013RAA....13.1463O 78           X         2 11 12 SN 2009ip and SN 2010mc as dual-shock Quark-Novae. OUYED R., KONING N. and LEAHY D.
2015MNRAS.448.1206M viz 572       D     X C       14 272 59 Selecting superluminous supernovae in faint galaxies from the first year of the Pan-STARRS1 Medium Deep Survey. McCRUM M., SMARTT S.J., REST A., et al.
2015AJ....149..165W 56       D     X         2 11 15 Testing cosmological models with Type IC super luminous supernovae. WEI J.-J., WU X.-F. and MELIA F.
2015ApJ...804...90L 136       D     X         4 19 56 Zooming in on the progenitors of superluminous supernovae with the HST. LUNNAN R., CHORNOCK R., BERGER E., et al.
2012ATel.4329....1I 77           X         2 6 2 Further spectral classification of PESSTO blue transients. INSERRA C., SMARTT S.J., FRASER M., et al.
2012ATel.4498....1D 77           X         2 28 4 Classification of CRTS optical transients. DRAKE A.J., MAHABAL A.A., DJORGOVSKI S.G., et al.
2012ATel.4512....1T 40           X         1 2 4 Classification of CSS121015 J004244+132827. TOMASELLA L., BENETTI S., PASTORELLO A., et al.
2015A&A...577A..44O 40           X         1 28 12 Multiwavelength analysis of three supernovae associated with gamma-ray bursts observed by GROND. OLIVARES E.F., GREINER J., SCHADY P., et al.
2015MNRAS.449..917L 97       D       C       5 29 173 Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies. LELOUDAS G., SCHULZE S., KRUHLER T., et al.
2015MNRAS.449.1215P 79           X         2 25 41 DES13S2cmm: the first superluminous supernova from the Dark Energy Survey. PAPADOPOULOS A., D'ANDREA C.B., SULLIVAN M., et al.
2015MNRAS.449.1941P viz 40           X         1 14 11 Massive stars exploding in a He-rich circumstellar medium - V. Observations of the slow-evolving SN Ibn OGLE-2012-SN-006. PASTORELLO A., WYRZYKOWSKI L., VALENTI S., et al.
2013ATel.5128....1S 39           X         1 4 1 Classification of super-luminous SN : MLS130517:131841-070443. SMARTT S.J., NICHOLL M., INSERRA C., et al.
2015AstL...41...95B 2 3 16 Hydrogenless superluminous supernova PTF12dam in the model of an explosion inside an extended envelope. BAKLANOV P.V., SOROKINA E.I. and BLINNIKOV S.I.
2015MNRAS.451.3151E 397           X C F     8 20 2 Explosion of a massive, He-rich star at z = 0.16. ELIAS-ROSA N., PASTORELLO A., NICHOLL M., et al.
2015MNRAS.452.1567C 239           X         6 23 78 The host galaxy and late-time evolution of the superluminous supernova PTF12dam. CHEN T.-W., SMARTT S.J., JERKSTRAND A., et al.
2015MNRAS.452.3869N 255       D     X C       6 55 156 On the diversity of superluminous supernovae: ejected mass as the dominant factor. NICHOLL M., SMARTT S.J., JERKSTRAND A., et al.
2015ApJ...815L..10L 80             C       1 7 21 Polarimetry of the superluminous supernova LSQ14mo: no evidence for significant deviations from spherical symmetry. LELOUDAS G., PATAT F., MAUND J.R., et al.
2014ATel.5912....1C           X     *   1 14 1 PESSTO spectroscopic classification of optical transients. CAMPBELL H., FRASER M., BLAGORODNOVA N., et al.
2016Sci...351..257D 616           X         15 12 172 ASASSN-15lh: A highly super-luminous supernova. DONG S., SHAPPEE B.J., PRIETO J.L., et al.
2016ApJ...817..132D 125           X         3 10 52 The most luminous supernova ASASSN-15lh: signature of a newborn rapidly rotating strange quark star. DAI Z.G., WANG S.Q., WANG J.S., et al.
2016ApJ...819....5T 121           X C       2 25 49 Rapidly rising transients from the Subaru Hyper Suprime-Cam transient survey. TANAKA M., TOMINAGA N., MOROKUMA T., et al.
2016ApJ...821...22W 206           X C       4 3 16 Optical transients powered by magnetars: dynamics, light curves, and transition to the nebular phase. WANG L.-J., WANG S.Q., DAI Z.G., et al.
2016MNRAS.457..351Y 82               F     1 7 14 Mass ejection by pulsational pair instability in very massive stars and implications for luminous supernovae. YOSHIDA T., UMEDA H., MAEDA K., et al.
2016MNRAS.458...84A viz 16       D               4 127 46 A Hubble Space Telescope survey of the host galaxies of Superluminous Supernovae. ANGUS C.R., LEVAN A.J., PERLEY D.A., et al.
2016MNRAS.459.1039T 41           X         1 32 33 Interacting supernovae and supernova impostors. LSQ13zm: an outburst heralds the death of a massive star. TARTAGLIA L., PASTORELLO A., SULLIVAN M., et al.
2016ApJ...826...39N 87           X         2 18 133 SN 2015BN: a detailed multi-wavelength view of a nearby superluminous supernova. NICHOLL M., BERGER E., SMARTT S.J., et al.
2016MNRAS.460L..55M 16       D               1 23 10 Constraining the ellipticity of strongly magnetized neutron stars powering superluminous supernovae. MORIYA T.J. and TAURIS T.M.
2016MNRAS.460.3232C 16       D               1 128 5 Physical conditions and element abundances in supernova and γ-ray burst host galaxies at different redshifts. CONTINI M.
2016ApJ...827...90L viz 41           X         1 63 103 Analyzing the largest spectroscopic data set of stripped supernovae to improve their identifications and constrain their progenitors. LIU Y.-Q., MODJAZ M., BIANCO F.B., et al.
2016ApJ...828...94C 85           X         2 4 22 Extreme supernova models for the super-luminous transient ASASSN-15lh. CHATZOPOULOS E., WHEELER J.C., VINKO J., et al.
2016ApJ...829...17S 1477     A S   X C       35 7 60 Type I superluminous supernovae as explosions inside non-hydrogen circumstellar envelopes. SOROKINA E., BLINNIKOV S., NOMOTO K., et al.
2016A&A...593A.115J 16       D               1 31 11 Taking stock of superluminous supernovae and long gamma-ray burst host galaxy comparison using a complete sample of LGRBs. JAPELJ J., VERGANI S.D., SALVATERRA R., et al.
2016ApJ...830...13P viz 462       D S   X         11 42 174 Host-galaxy properties of 32 low-redshift superluminous supernovae from the Palomar transient factory. PERLEY D.A., QUIMBY R.M., YAN L., et al.
2016ApJ...831...79I 44           X         1 11 49 Spectropolarimetry of superluminous supernovae: insight into their geometry. INSERRA C., BULLA M., SIM S.A., et al.
2016ApJ...832...73C 128           X C       2 5 41 Magnetar-powered supernovae in two dimensions. I. Superluminous supernovae. CHEN K.-J., WOOSLEY S.E. and SUKHBOLD T.
2016ApJ...833...64M 162             C F     2 7 7 Supernovae powered by magnetars that transform into black holes. MORIYA T.J., METZGER B.D. and BLINNIKOV S.I.
2017ApJ...835L...8N 246           X   F     5 13 38 An ultraviolet excess in the superluminous supernova Gaia16apd reveals a powerful central engine. NICHOLL M., BERGER E., MARGUTTI R., et al.
2016ATel.9071....1K 41           X         1 3 4 Spectroscopic classification of supernova Gaia16apd with the Nordic Optical Telescope. KANGAS T., ELIAS-ROSA N., LUNDQVIST P., et al.
2016A&A...596A..67R 602           X C       14 60 14 SN 2012aa: A transient between Type Ibc core-collapse and superluminous supernovae. ROY R., SOLLERMAN J., SILVERMAN J.M., et al.
2017ApJ...836...25M viz 129           X C       2 9 63 X-rays from the location of the double-humped transient ASASSN-15lh. MARGUTTI R., METZGER B.D., CHORNOCK R., et al.
2017MNRAS.466.1428G 125           X         3 11 38 The unexpected, long-lasting, UV rebrightening of the superluminous supernova ASASSN-15lh. GODOY-RIVERA D., STANEK K.Z., KOCHANEK C.S., et al.
2017MNRAS.464.3568P 17       D               2 25 46 The volumetric rate of superluminous supernovae at z ∼ 1. PRAJS S., SULLIVAN M., SMITH M., et al.
2017ApJ...840...12Y 17       D               3 38 51 A statistical study of superluminous supernovae using the magnetar engine model and implications for their connection with gamma-ray bursts and hypernovae. YU Y.-W., ZHU J.-P., LI S.-Z., et al.
2017ApJ...840...57Y 42           X         1 22 38 Far-ultraviolet to near-infrared spectroscopy of a nearby hydrogen-poor superluminous supernova Gaia16apd. YAN L., QUIMBY R., GAL-YAM A., et al.
2017ApJ...842...26L 260       D     X C       6 26 23 A Monte Carlo approach to magnetar-powered transients. I. Hydrogen-deficient superluminous supernovae. LIU L.-D., WANG S.-Q., WANG L.-J., et al.
2016ATel.8600....1E 7 ~ PESSTO spectroscopic classification of optical transients. ELIAS-ROSA N., TERRERAN G., CIKOTA A., et al.
2017A&A...602A...9C 245           X C       5 25 37 The evolution of superluminous supernova LSQ14mo and its interacting host galaxy system. CHEN T.-W., NICHOLL M., SMARTT S.J., et al.
2017MNRAS.468.4642I 326           X C F     6 35 37 Complexity in the light curves and spectra of slow-evolving superluminous supernovae. INSERRA C., NICHOLL M., CHEN T.-W., et al.
2017MNRAS.469.1246K 595     A     X C       14 13 36 Gaia16apd - a link between fast and slowly declining type I superluminous supernovae. KANGAS T., BLAGORODNOVA N., MATTILA S., et al.
2017ApJ...845L...2T 42           X         1 6 6 Ultraviolet light curves of Gaia16apd in superluminous supernova models. TOLSTOV A., ZHIGLO A., NOMOTO K., et al.
2017ApJ...845...85L viz 326           X C       7 47 77 Analyzing the largest spectroscopic data set of hydrogen-poor super-luminous supernovae. LIU Y.-Q., MODJAZ M. and BIANCO F.B.
2017MNRAS.470.3566C 465       D     X   F     11 22 54 Superluminous supernova progenitors have a half-solar metallicity threshold. CHEN T.-W., SMARTT S.J., YATES R.M., et al.
2017ApJ...848....6Y 165           X C       3 23 91 Hydrogen-poor superluminous supernovae with late-time Hα emission: three events from the intermediate Palomar Transient Factory. YAN L., LUNNAN R., PERLEY D.A., et al.
2017ApJ...850...55N 20       D               2 41 176 The magnetar model for Type I superluminous supernovae. I. Bayesian analysis of the full multicolor light-curve sample with MOSFiT. NICHOLL M., GUILLOCHON J. and BERGER E.
2017ApJ...851...95S 17       D               1 24 24 Magnetar-powered superluminous supernovae must first be exploded by jets. SOKER N. and GILKIS A.
2018MNRAS.473.1258S 141       D     X         4 75 131 Cosmic evolution and metal aversion in superluminous supernova host galaxies. SCHULZE S., KRUHLER T., LELOUDAS G., et al.
2018ApJ...853...57B 208           X C       4 27 66 Gaia17biu/SN 2017egm in NGC 3191: the closest hydrogen-poor superluminous supernova to date is in a "normal," massive, metal-rich spiral galaxy. BOSE S., DONG S., PASTORELLO A., et al.
2018MNRAS.474..573O 100       D     X         3 9 16 Radio emission from embryonic superluminous supernova remnants. OMAND C.M.B., KASHIYAMA K. and MURASE K.
2018ApJ...854..175I 99       D       C       2 48 19 A statistical approach to identify superluminous supernovae and probe their diversity. INSERRA C., PRAJS S., GUTIERREZ C.P., et al.
2018ApJ...855....2Q 964       D     X C       23 63 93 Spectra of hydrogen-poor superluminous supernovae from the Palomar Transient Factory. QUIMBY R.M., DE CIA A., GAL-YAM A., et al.
2018MNRAS.475.1046I 45           X         1 23 103 On the nature of hydrogen-rich superluminous supernovae. INSERRA C., SMARTT S.J., GALL E.E.E., et al.
2018ApJ...857...72H 263       D     X C       6 12 5 Obscured star formation in the host galaxies of superluminous supernovae. HATSUKADE B., TOMINAGA N., HAYASHI M., et al.
2018A&A...611A..45R 82           X         2 47 13 Search for γ-ray emission from superluminous supernovae with the Fermi-LAT. RENAULT-TINACCI N., KOTERA K., NERONOV A., et al.
2018ApJ...860..100D viz 265       D     X         7 41 119 Light curves of hydrogen-poor superluminous supernovae from the Palomar Transient Factory. DE CIA A., GAL-YAM A., RUBIN A., et al.
2018MNRAS.478..110S 41           X         1 16 6 Broad-band emission properties of central engine-powered supernova ejecta interacting with a circumstellar medium. SUZUKI A. and MAEDA K.
2018ApJ...864...45M viz 182       D     X         5 37 58 Results from a systematic survey of X-ray emission from hydrogen-poor superluminous SNe. MARGUTTI R., CHORNOCK R., METZGER B.D., et al.
2018ApJ...865....9B 288           X C       6 18 9 The Type I superluminous supernova PS16aqv: lightcurve complexity and deep limits on radioactive ejecta in a fast event. BLANCHARD P.K., NICHOLL M., BERGER E., et al.
2018MNRAS.479.4984C 41           X         1 10 1 Testing the magnetar scenario for superluminous supernovae with circular polarimetry. CIKOTA A., LELOUDAS G., BULLA M., et al.
2018ApJ...867L..31C 43           X         1 16 40 SN 2017ens: the metamorphosis of a luminous broadlined Type Ic supernova into an SN IIn. CHEN T.-W., INSERRA C., FRASER M., et al.
2018ApJ...867..113M 99       D       C       2 37 11 Systematic investigation of the fallback accretion-powered model for hydrogen-poor superluminous supernovae. MORIYA T.J., NICHOLL M. and GUILLOCHON J.
2018ApJ...869..166V 16       D               1 58 6 Superluminous supernovae in LSST: rates, detection metrics, and light-curve modeling. VILLAR V.A., NICHOLL M. and BERGER E.
2019ApJ...872...90B 167           X C       3 18 4 A hydrogen-poor superluminous supernova with enhanced iron-group absorption: a new link between SLSNe and broad-lined Type Ic SNe. BLANCHARD P.K., NICHOLL M., BERGER E., et al.
2019A&A...621A.141D 211           X C       4 16 33 Simulations of light curves and spectra for superluminous Type Ic supernovae powered by magnetars. DESSART L.
2019RAA....19...63W 167           X C       3 28 3 The Energy Sources of Superluminous Supernovae. WANG S.-Q., WANG L.-J. and DAI Z.-G.
2019ApJ...882..102G 84           X         2 11 ~ A simple analysis of Type I superluminous supernova peak spectra: composition, expansion velocities, and dynamics. GAL-YAM A.
2019ApJ...886...24L 268       D     X C       6 18 ~ A search for late-time radio emission and fast radio bursts from superluminous supernovae. LAW C.J., OMAND C.M.B., KASHIYAMA K., et al.
2019ApJ...887...72L 46           X         1 17 76 Pulsational pair-instability supernovae. I. Pre-collapse evolution and pulsational mass ejection. LEUNG S.-C., NOMOTO K. and BLINNIKOV S.
2020A&A...634A.107Y 17       D               2 144 39 Present-day mass-metallicity relation for galaxies using a new electron temperature method. YATES R.M., SCHADY P., CHEN T.-W., et al.
2020ApJ...892...28K 43           X         1 20 ~ SN 2010kd: photometric and spectroscopic analysis of a slow-decaying superluminous supernova. KUMAR A., PANDEY S.B., KONYVES-TOTH R., et al.
2020MNRAS.493.5170H 17       D               5 17 ~ Observing superluminous supernovae and long gamma-ray bursts as potential birthplaces of repeating fast radio bursts. HILMARSSON G.H., SPITLER L.G., KEANE E.F., et al.
2020ApJ...897..114B 17       D               1 67 ~ The pre-explosion mass distribution of hydrogen-poor superluminous supernova progenitors and new evidence for a mass-spin correlation. BLANCHARD P.K., BERGER E., NICHOLL M., et al.
2020MNRAS.497..318L 426           X C F     8 15 ~ SN 2018hti: a nearby superluminous supernova discovered in a metal-poor galaxy. LIN W.L., WANG X.F., LI W.X., et al.
2020ApJ...901...61L viz 86           X         2 27 32 Four (super)luminous supernovae from the first months of the ZTF survey. LUNNAN R., YAN L., PERLEY D.A., et al.
2020ApJ...904...74G 17       D               1 145 ~ FLEET: a redshift-agnostic machine learning pipeline to rapidly identify hydrogen-poor superluminous supernovae. GOMEZ S., BERGER E., BLANCHARD P.K., et al.
2020A&A...643A..47O 17       D               1 93 ~ The interacting nature of dwarf galaxies hosting superluminous supernovae. ORUM S.V., IVENS D.L., STRANDBERG P., et al.
2021MNRAS.500.5142F 17       D               1 113 29 From core collapse to superluminous: the rates of massive stellar explosions from the Palomar Transient Factory. FROHMAIER C., ANGUS C.R., VINCENZI M., et al.
2021ApJ...909...24K 192       D     X         5 93 ~ Photospheric velocity gradients and ejecta masses of hydrogen-poor superluminous supernovae: proxies for distinguishing between fast and slow events. KONYVES-TOTH R. and VINKO J.
2017ATel10549....1S 41           X         1 10 ~ Spectroscopic Classifications of Optical Transients with Mayall/KOSMOS. SIEBERT M.R., PAN Y.-C., KILPATRICK C.D., et al.
2021MNRAS.502.1678K 853     A     X C       19 51 12 SN 2020ank: a bright and fast-evolving H-deficient superluminous supernova. KUMAR A., KUMAR B., PANDEY S.B., et al.
2017ATel10650....1L 41           X         1 13 ~ ePESSTO spectroscopic classification of optical transients. LYMAN J., HOMAN D., MAGEE M., et al.
2021ApJ...912...21E 453       D S   X         10 125 18 Late-time radio and millimeter observations of superluminous supernovae and long gamma-ray bursts: implications for central engines, fast radio bursts, and obscured star formation. EFTEKHARI T., MARGALIT B., OMAND C.M.B., et al.
2021MNRAS.504.2535I 61       D     X         2 31 24 The first Hubble diagram and cosmological constraints using superluminous supernovae. INSERRA C., SULLIVAN M., ANGUS C.R., et al.
2021ApJ...913..143G viz 44           X         1 20 17 The luminous and double-peaked Type Ic Supernova 2019stc: evidence for multiple energy sources. GOMEZ S., BERGER E., HOSSEINZADEH G., et al.
2021ApJ...914L...2L 61       D     X         2 5 ~ Supernova luminosity powered by magnetar-disk system. LIN W., WANG X., WANG L., et al.
2021ApJ...915...80L 45           X         1 12 19 Fast blue optical transients due to circumstellar interaction and the mysterious supernova SN 2018gep. LEUNG S.-C., FULLER J. and NOMOTO K.
2021ApJS..255...29S viz 17       D               1 893 63 The Palomar Transient Factory core-collapse supernova host-galaxy sample. I. Host-galaxy distribution functions and environment dependence of core-collapse supernovae. SCHULZE S., YARON O., SOLLERMAN J., et al.
2021A&A...651A..81B viz 44           X         1 53 18 Type Ic supernovae from the (intermediate) Palomar Transient Factory. BARBARINO C., SOLLERMAN J., TADDIA F., et al.
2021ApJ...922...17H 44           X         1 40 2 A VLA survey of late-time radio emission from superluminous supernovae and the host galaxies. HATSUKADE B., TOMINAGA N., MOROKUMA T., et al.
2022MNRAS.512.4484F 45           X         1 24 4 Close, bright, and boxy: the superluminous SN 2018hti. FIORE A., BENETTI S., NICHOLL M., et al.
2022MNRAS.514.2627C 269           X C       5 63 5 A puzzle solved after two decades: SN 2002gh among the brightest of superluminous supernovae. CARTIER R., HAMUY M., CONTRERAS C., et al.
2022ApJ...933...14H 18       D               1 35 28 Bumpy Declining Light Curves Are Common in Hydrogen-poor Superluminous Supernovae. HOSSEINZADEH G., BERGER E., METZGER B.D., et al.
2022ApJ...940...69K 108       D     X         3 32 2 Premaximum Spectroscopic Diversity of Hydrogen-poor Superluminous Supernovae. KONYVES-TOTH R.
2023MNRAS.518..860G 47           X         1 12 9 Evaluating chemically homogeneous evolution in stellar binaries: electromagnetic implications - ionizing photons, SLSN-I, GRB, Ic-BL. GHODLA S., ELDRIDGE J.J., STANWAY E.R., et al.
2022ApJ...941..107G 45           X         1 238 16 Luminous Supernovae: Unveiling a Population between Superluminous and Normal Core-collapse Supernovae. GOMEZ S., BERGER E., NICHOLL M., et al.
2023ApJ...943...41C 19       D               1 71 17 The Hydrogen-poor Superluminous Supernovae from the Zwicky Transient Facility Phase I Survey. I. Light Curves and Measurements. CHEN Z.H., YAN L., KANGAS T., et al.
2023NatAs...7..779L 93           X         2 16 ~ A superluminous supernova lightened by collisions with pulsational pair-instability shells. LIN W., WANG X., YAN L., et al.
2023ApJ...954...44K 252       D     X C       5 29 ~ Type W and Type 15bn Subgroups of Hydrogen-poor Superluminous Supernovae: Premaximum Diversity, Postmaximum Homogeneity? KONYVES-TOTH R. and SELI B.
2023MNRAS.526.1822K 112       D         F     2 31 ~ Reduction of supernova light curves by vector Gaussian processes. KORNILOV M.V., SEMENIKHIN T.A. and PRUZHINSKAYA M.V.
2024ApJ...961..169H 20       D               2 110 ~ An Extensive Hubble Space Telescope Study of the Offset and Host Light Distributions of Type I Superluminous Supernovae. HSU B., BLANCHARD P.K., BERGER E., et al.

goto View the references in ADSLimited to 100