SN 2012A , the SIMBAD biblio

SN 2012A , the SIMBAD biblio (113 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.04.23CEST08:48:13


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2012CBET.2974....1M 40 T       O X         2 5 Supernova 2012A in NGC 3239 = PSN J10250739+1709146. MOORE B., NEWTON J. and PUCKETT T.
2012CBET.2974....2L 39 T       O X         2 1 Supernova 2012A in NGC 3239 = PSN J10250739+1709146. LUPPI F., BUZZI L., YUSA T., et al.
2012CBET.2974....3S 39 T       O X         2 2 Supernova 2012A in NGC 3239 = PSN J10250739+1709146. STANISHEV V. and PURSIMO T.
2012CBET.2975....1C 39 T       O X         2 1 Supernova 2012A in NGC 3239. CAO Y., KASLIWAL M.M., WALLERSTEIN G., et al.
2012CBET.2975....2R 39 T       O X         4 1 Supernova 2012A in NGC 3239. ROY R. and CHAKRABORTI S.
2012ApJ...761...63P 15       D               1 24 26 Gravitational waves from fallback accretion onto neutron stars. PIRO A.L. and THRANE E.
2013MNRAS.428.1927C 94       D     X         3 330 52 On the association between core-collapse supernovae and HII regions. CROWTHER P.A.
2013MNRAS.433.1312F viz 1289       S   X C       31 29 118 SN 2009ip a la PESSTO: no evidence for core collapse yet. FRASER M., INSERRA C., JERKSTRAND A., et al.
2013MNRAS.434.1636T 4409 T   A D     X C F     111 21 92 Comparison of progenitor mass estimates for the type IIP
SN 2012A.
TOMASELLA L., CAPPELLARO E., FRASER M., et al.
2013MNRAS.436..774E viz 16       D               1 250 249 The death of massive stars - II. Observational constraints on the progenitors of type Ibc supernovae. ELDRIDGE J.J., FRASER M., SMARTT S.J., et al.
2014MNRAS.437.3848L 174       D     X C       4 42 84 Bolometric corrections for optical light curves of core-collapse supernovae. LYMAN J.D., BERSIER D. and JAMES P.A.
2014MNRAS.438L.101V viz 319           X C F     6 13 127 The first month of evolution of the slow-rising Type IIP SN 2013ej in M74. VALENTI S., SAND D., PASTORELLO A., et al.
2014AstL...40..111C 6 3 Disparity between Hα and Hβ in SN 2008 in: Inhomogeneous external layers of type IIP supernovae? CHUGAI N.N. and UTROBIN V.P.
2014MNRAS.439.2873S 40           X         1 40 125 Low luminosity Type II supernovae - II. Pointing towards moderate mass precursors. SPIRO S., PASTORELLO A., PUMO M.L., et al.
2014ApJ...787..139D 394           X C       9 22 78 The Type IIP supernova 2012aw in M95: hydrodynamical modeling of the photospheric phase from accurate spectrophotometric monitoring. DALL'ORA M., BOTTICELLA M.T., PUMO M.L., et al.
2014ApJ...787..157P 16       D               1 51 35 Bolometric and UV light curves of core-collapse supernovae. PRITCHARD T.A., ROMING P.W.A., BROWN P.J., et al.
2014MNRAS.440.1917D 55       D     X         2 32 57 On the lack of X-ray bright Type IIP supernovae. DWARKADAS V.V.
2014AstL...40..291C 10 7 Does the energy of type IIP supernovae depend on the stellar mass? CHIGAI N.N. and UTROBIN V.P.
2014MNRAS.442..844F viz 41           X         1 32 135 Photometric and spectroscopic properties of Type II-P supernovae. FARAN T., POZNANSKI D., FILIPPENKO A.V., et al.
2014ApJ...795..142G viz 16       D               1 448 7 Defining photometric peculiar type Ia supernovae. GONZALEZ-GAITAN S., HSIAO E.Y., PIGNATA G., et al.
2014AJ....148..107R 134       D     X         4 104 44 Photospheric magnitude diagrams for Type II supernovae: a promising tool to compute distances. RODRIGUEZ O., CLOCCHIATTI A. and HAMUY M.
2014A&A...571A..77N 354       S   X C       7 10 15 A semianalytical light curve model and its application to Type IIP supernovae. NAGY A.P., ORDASI A., VINKO J., et al.
2014ApJ...797....5Z 393           X C       9 19 14 Optical and ultraviolet observations of a low-velocity type II plateau supernova 2013am in M65. ZHANG J., WANG X., MAZZALI P.A., et al.
2015ApJ...799..215P viz 453       D     X C       11 53 38 A global model of the light curves and expansion velocities of Type II-Plateau supernovae. PEJCHA O. and PRIETO J.L.
2015A&A...575A.100U 1454 T K A     X C       35 11 12 Parameters of Type IIP
SN 2012A and clumpiness effects.
UTROBIN V.P. and CHUGAI N.N.
2015MNRAS.448.2312B 2542   K A D     X C       64 21 9 SN 2012ec: mass of the progenitor from PESSTO follow-up of the photospheric phase. BARBARINO C., DALL'ORA M., BOTTICELLA M.T., et al.
2015MNRAS.448.2482J 334       D     X C       8 18 27 Supersolar Ni/Fe production in the Type IIP SN 2012ec. JERKSTRAND A., SMARTT S.J., SOLLERMAN J., et al.
2015MNRAS.448.2608V viz 17       D               1 21 53 Supernova 2013by: a Type IIL supernova with a IIP-like light-curve drop. VALENTI S., SAND D., STRITZINGER M., et al.
2012ATel.3855....1C 39           X         1 2 ~ Supernova candidate in NGC 3239 is type II. CAO Y., KASLIWAL M.M., WALLERSTEIN G., et al.
2012ATel.3857....1X 116 T         X         2 2 ~ Swift obervation of
PSN J10250739+1709146 in NGC 3239.
XU D.
2012ATel.3860....1H 155 T         X         3 2 ~ CARMA observation of
SN 2012A (
PSN J10250739+1709146).
HORESH A., CARPENTER J., KULKARNI S.R., et al.
2012ATel.3861....1S 116 T         X         2 2 1 Radio non-detection of the type IIP supernova 2012A in NGC 3239. STOCKDALE C.J., RYDER S.D., VAN DYK S.D., et al.
2012ATel.3863....1P 271 T         X         6 3 2 Candidate progenitor of the type II
SN 2012A in the near-IR.
PRIETO J.L., OSIP D. and PALUNAS P.
2012ATel.3956....1P 116 T         X         2 1 1 Swift XRT detection of
SN 2012A in X-rays.
POOLEY D. and IMMLER S.
2012ATel.4066....1P 232 T         X         5 1 ~ Chandra observation of
SN 2012A.
POOLEY D.
2015ApJ...806..160B 136       D     X C       3 23 61 SN 2013ej: a Type IIL supernova with weak signs of interaction. BOSE S., SUTARIA F., KUMAR B., et al.
2015MNRAS.450.2373B 40           X         1 19 37 SN 2013ab: a normal Type IIP supernova in NGC 5669. BOSE S., VALENTI S., MISRA K., et al.
2015MNRAS.450.3137T viz 79           X         2 27 32 SN 2009ib: a Type II-P supernova with an unusually long plateau. TAKATS K., PIGNATA G., PUMO M.L., et al.
2015MNRAS.451.2212G 42           X         1 25 107 The rise-time of Type II supernovae. GONZALEZ-GAITAN S., TOMINAGA N., MOLINA J., et al.
2015A&A...582A...3G 334       D     X C       8 68 45 A comparative study of Type II-P and II-L supernova rise times as exemplified by the case of LSQ 13cuw. GALL E.E.E., POLSHAW J., KOTAK R., et al.
2016AJ....151...33G viz 16       D               1 168 81 UBVRIz light curves of 51 Type II supernovae. GALBANY L., HAMUY M., PHILLIPS M.M., et al.
2016MNRAS.455.2712B 217       D     X   F     5 40 3 Photometric and polarimetric observations of fast declining Type II supernovae 2013hj and 2014G. BOSE S., KUMAR B., MISRA K., et al.
2016ApJ...820...33R viz 16       D               1 70 56 Type II supernova energetics and comparison of light curves to shock-cooling models. RUBIN A., GAL-YAM A., DE CIA A., et al.
2015ATel.6898....1L 40           X         1 2 3 Spectroscopic Classification of CSS141118:092034+504148 as a Type II-P Supernova. LI W., WANG X. and ZHANG T.
2015ATel.7012....1T 40           X         1 14 ~ Asiago spectroscopic classification of six optical transients. TOMASELLA L., BENETTI S., CAPPELLARO E., et al.
2016ApJ...823..127N 17       D               1 25 27 The importance of 56Ni in shaping the light curves of type II supernovae. NAKAR E., POZNANSKI D. and KATZ B.
2015ATel.7378....1M 40           X         1 5 ~ NOT and LT spectroscopic classification of supernovae Gaia 15acz and Gaia 15aek. MATTILA S., HARMANEN J., KANGAS T., et al.
2016A&A...589A..53N 297       D     X C       7 18 16 A two-component model for fitting light curves of core-collapse supernovae. NAGY A.P. and VINKO J.
2016ApJ...826..211Z 120           X C       2 88 7 The oxygen features in type Ia supernovae and implications for the nature of thermonuclear explosions. ZHAO X., MAEDA K., WANG X., et al.
2016MNRAS.459.3939V viz 178       D       C F     6 210 225 The diversity of Type II supernova versus the similarity in their progenitors. VALENTI S., HOWELL D.A., STRITZINGER M.D., et al.
2016MNRAS.461.3296N viz 40           X         1 355 95 Multimessenger signals of long-term core-collapse supernova simulations: synergetic observation strategies. NAKAMURA K., HORIUCHI S., TANAKA M., et al.
2016ApJ...832..139H 41           X         1 14 16 Optical and ultraviolet observations of the very young Type IIP SN 2014cx in NGC 337. HUANG F., WANG X., ZAMPIERI L., et al.
2017A&A...597A..92K 41           X         1 19 15 Core-collapse supernova progenitor constraints using the spatial distributions of massive stars in local galaxies. KANGAS T., PORTINARI L., MATTILA S., et al.
2017MNRAS.464.3013P 260       D     X   F     6 30 11 Radiation-hydrodynamical modelling of underluminous Type II plateau supernovae. PUMO M.L., ZAMPIERI L., SPIRO S., et al.
2017MNRAS.467..369S 1397       D     X   F     34 79 11 After the fall: late-time spectroscopy of Type IIP supernovae. SILVERMAN J.M., PICKETT S., WHEELER J.C., et al.
2017ApJ...846...37U 203           X C       4 11 6 Light-curve analysis of ordinary Type IIP supernovae based on neutrino-driven explosion simulations in three dimensions. UTROBIN V.P., WONGWATHANARAT A., JANKA H.-Th., et al.
2017MNRAS.472.5004U 97       D         F     3 15 5 Luminous Type IIP SN 2013ej with high-velocity 56Ni ejecta. UTROBIN V.P. and CHUGAI N.N.
2018MNRAS.473..513F 716       D     X C F     16 29 10 The evolution of temperature and bolometric luminosity in Type II supernovae. FARAN T., NAKAR E. and POZNANSKI D.
2018ApJS..234...34P 367           X C       4 7 1127 Modules for Experiments in Stellar Astrophysics (MESA): convective boundaries, element diffusion, and massive star explosions. PAXTON B., SCHWAB J., BAUER E.B., et al.
2018MNRAS.474.2116D 141       D     X         4 58 97 The initial masses of the red supergiant progenitors to Type II supernovae. DAVIES B. and BEASOR E.R.
2018MNRAS.475.1937T 1235           X C F     28 27 11 SNe 2013K and 2013am: observed and physical properties of two slow, normal Type IIP events. TOMASELLA L., CAPPELLARO E., PUMO M.L., et al.
2018MNRAS.475.3959H 222       D     X C F     4 26 18 SN 2016X: a type II-P supernova with a signature of shock breakout from explosion of a massive red supergiant. HUANG F., WANG X.-F., HOSSEINZADEH G., et al.
2018ApJ...858...15M 20       D               2 23 111 Measuring the progenitor masses and dense circumstellar material of Type II supernovae. MOROZOVA V., PIRO A.L. and VALENTI S.
2018MNRAS.476.4806N 82           X         2 6 3 Polarization as a probe of dusty environments around Type Ia supernovae: radiative transfer models for SN 2012dn. NAGAO T., MAEDA K. and YAMANAKA M.
2018A&A...613A..35K 16       D               4 171 55 Constraints on core-collapse supernova progenitors from explosion site integral field spectroscopy. KUNCARAYAKTI H., ANDERSON J.P., GALBANY L., et al.
2018ApJ...862..107B 82             C       1 26 7 ASASSN-15nx: a luminous Type II supernova with a "perfect" linear decline. BOSE S., DONG S., KOCHANEK C.S., et al.
2018NatAs...2..574A 1 12 16 The lowest-metallicity type II supernova from the highest-mass red supergiant progenitor. ANDERSON J.P., DESSART L., GUTIERREZ C.P., et al.
2018MNRAS.479.2421D 41           X         1 48 10 SN 2015ba: a Type IIP supernova with a long plateau. DASTIDAR R., MISRA K., HOSSEINZADEH G., et al.
2018MNRAS.480.2475S 99       D       C       2 58 8 ASASSN-14dq: a fast-declining Type II-P supernova in a low-luminosity host galaxy. SINGH A., SRIVASTAV S., KUMAR B., et al.
2018MNRAS.481.2536K 41           X         1 20 14 The dusty progenitor star of the Type II supernova 2017eaw. KILPATRICK C.D. and FOLEY R.J.
2019MNRAS.482.2750R 418           X C F     8 15 5 Signatures of an eruptive phase before the explosion of the peculiar core-collapse SN 2013gc. REGUITTI A., PASTORELLO A., PIGNATA G., et al.
2019MNRAS.483.5459R viz 59       D     X         2 66 5 Type II supernovae as distance indicators at near-IR wavelengths. RODRIGUEZ O., PIGNATA G., HAMUY M., et al.
2019MNRAS.485.5120B 125           X C       2 20 2 Signatures of circumstellar interaction in the Type IIL supernova ASASSN-15oz. BOSTROEM K.A., VALENTI S., HORESH A., et al.
2019ApJ...877...92O 84             C       1 10 ~ Constraining massive star activities in the final years through properties of supernovae and their progenitors. OUCHI R. and MAEDA K.
2019MNRAS.487..832B viz 418           X C F     8 9 ~ BVRI photometry of the classic Type II-P supernova 2017eaw in NGC 6946: d 3 to d 594. BUTA R.J. and KEEL W.C.
2019ApJ...881..158S 17       D               2 14 ~ The initial mass-final luminosity relation of Type II supernova progenitors: hints of new physics? STRANIERO O., DOMINGUEZ I., PIERSANTI L., et al.
2019MNRAS.489..641M 17       D               1 42 ~ A comparison of explosion energies for simulated and observed core-collapse supernovae. MURPHY J.W., MABANTA Q. and DOLENCE J.C.
2019ApJ...885...43A viz 42           X         1 36 30 SN 2017gmr: an energetic Type II-P supernova with asymmetries. ANDREWS J.E., SAND D.J., VALENTI S., et al.
2019MNRAS.489.5802V 17       D               1 72 28 Spectrophotometric templates for core-collapse supernovae and their application in simulations of time-domain surveys. VINCENZI M., SULLIVAN M., FIRTH R.E., et al.
2019ApJ...887....4D 309       D     X         8 73 ~ Carnegie Supernova Project-II: near-infrared spectroscopic diversity of Type II supernovae. DAVIS S., HSIAO E.Y., ASHALL C., et al.
2019MNRAS.490.2042U 100       D         F     3 15 ~ Resolving the puzzle of type IIP SN 2016X. UTROBIN V.P. and CHUGAI N.N.
2019MNRAS.490.2799D 184       D       C F     5 109 41 The Berkeley sample of Type II supernovae: BVRI light curves and spectroscopy of 55 SNe II. DE JAEGER T., ZHENG W., STAHL B.E., et al.
2020MNRAS.494L..53F 17       D               1 19 ~ The uncertain masses of progenitors of core-collapse supernovae and direct-collapse black holes. FARRELL E.J., GROH J.H., MEYNET G., et al.
2020ApJ...895...31B viz 44           X         1 14 16 Discovery and rapid follow-up observations of the unusual Type II SN 2018ivc in NGC 1068. BOSTROEM K.A., VALENTI S., SAND D.J., et al.
2020MNRAS.496.4517S 60       D     X         2 46 22 The γ-ray deposition histories of core-collapse supernovae. SHARON A. and KUSHNIR D.
2020MNRAS.497..361M 102       D     X         3 44 ~ The low-luminosity Type II SN 2016aqf: a well-monitored spectral evolution of the Ni/Fe abundance ratio. MULLER-BRAVO T.E., GUTIERREZ C.P., SULLIVAN M., et al.
2020A&A...641A.177M viz 17       D               1 288 ~ Stripped-envelope core-collapse supernova 56Ni masses. Persistently larger values than supernovae type II. MEZA N. and ANDERSON J.P.
2021A&A...645A...6Z 87               F     4 34 29 Effect of binary evolution on the inferred initial and final core masses of hydrogen-rich, Type II supernova progenitors. ZAPARTAS E., DE MINK S.E., JUSTHAM S., et al.
2021ApJ...908...75B 17       D               1 556 32 The radio luminosity-risetime function of core-collapse supernovae. BIETENHOLZ M.F., BARTEL N., ARGO M., et al.
2021MNRAS.502.3829T 44           X         1 12 ~ Observations and spectral modelling of the narrow-lined Type Ic SN 2017ein. TEFFS J.J., PRENTICE S.J., MAZZALI P.A., et al.
2021MNRAS.503.3472B 87             C       2 36 7 ASASSN-18am/SN 2018gk: an overluminous Type IIb supernova from a massive progenitor. BOSE S., DONG S., KOCHANEK C.S., et al.
2021MNRAS.504.1009D 87               F     2 38 ~ The optical properties of three Type II supernovae: 2014cx, 2014cy, and 2015cz. DASTIDAR R., MISRA K., SINGH M., et al.
2021MNRAS.505..116U 104       D         F     3 16 ~ Enormous explosion energy of Type IIP SN 2017gmr with bipolar 56Ni ejecta. UTROBIN V.P., CHUGAI N.N., ANDREWS J.E., et al.
2021MNRAS.505.1742R 17       D               3 264 9 The iron yield of normal Type II supernovae. RODRIGUEZ O., MEZA N., PINEDA-GARCIA J., et al.
2019ATel12686....1P 42           X         1 2 ~ Soft X-rays from the direction of the Type Ia SN AT2019daj are not associated with the supernova but from foreground diffuse emission within our own Galaxy PASHAM D., ENOTO T., LOEWENSTEIN M., et al.
2022MNRAS.512.1541G 18       D               2 162 ~ Metallicity estimation of core-collapse Supernova H II regions in galaxies within 30 Mpc. GANSS R., PLEDGER J.L., SANSOM A.E., et al.
2022MNRAS.512.2777T 90               F     2 31 15 Progenitor and close-in circumstellar medium of type II supernova 2020fqv from high-cadence photometry and ultra-rapid UV spectroscopy. TINYANONT S., RIDDEN-HARPER R., FOLEY R.J., et al.
2022A&A...660A..40M 45           X         1 147 6 Type II supernovae from the Carnegie Supernova Project-I. I. Bolometric light curves of 74 SNe II using uBgVriYJH photometry. MARTINEZ L., BERSTEN M.C., ANDERSON J.P., et al.
2022MNRAS.513.4556Z 18       D               1 41 1 SN 2019va: a Type IIP Supernova with Large Influence of Nickel-56 Decay on the Plateau-phase Light Curve. ZHANG X., WANG X., SAI H., et al.
2022ApJ...930...31B 18       D               1 90 3 Characterization of Supernovae Based on the Spectral-Temporal Energy Distribution: Two Possible SN Ib Subtypes. BENGYAT O. and GAL-YAM A.
2022MNRAS.515..897R 466       D     X   F     10 122 8 Luminosity distribution of Type II supernova progenitors. RODRIGUEZ O.
2022ApJ...935...31H 90               F     1 27 13 Weak Mass Loss from the Red Supergiant Progenitor of the Type II SN 2021yja. HOSSEINZADEH G., KILPATRICK C.D., DONG Y., et al.
2022ApJ...939..105B 90       S             1 121 10 Seven Years of Coordinated Chandra-NuSTAR Observations of SN 2014C Unfold the Extreme Mass-loss History of Its Stellar Progenitor. BRETHAUER D., MARGUTTI R., MILISAVLJEVIC D., et al.
2023ApJ...944..110M 205       D     X C       4 110 4 Comparing the Locations of Supernovae to CO (2-1) Emission in Their Host Galaxies. MAYKER CHEN N., LEROY A.K., LOPEZ L.A., et al.
2023ApJ...945..107P 93             C       1 39 5 Circumstellar Medium Interaction in SN 2018lab, A Low-luminosity Type IIP Supernova Observed with TESS. PEARSON J., HOSSEINZADEH G., SAND D.J., et al.
2023ApJ...949L..12A 19       D               2 56 3 Constraining High-energy Neutrino Emission from Supernovae with IceCube. ABBASI R., ACKERMANN M., ADAMS J., et al.
2023MNRAS.519..471V 728   K A S   X C F     13 41 8 The disappearances of six supernova progenitors. VAN DYK S.D., DE GRAW A., BAER-WAY R., et al.
2023ApJ...951L..31B 140           X C       2 11 7 Millimeter Observations of the Type II SN 2023ixf: Constraints on the Proximate Circumstellar Medium. BERGER E., KEATING G.K., MARGUTTI R., et al.
2023ApJ...952L..23K 47           X         1 27 ~ SN 2023ixf in Messier 101: A Variable Red Supergiant as the Progenitor Candidate to a Type II Supernova. KILPATRICK C.D., FOLEY R.J., JACOBSON-GALAN W.V., et al.
2023MNRAS.524.2161K 93             C       1 26 ~ Type II-P supernova progenitor star initial masses and SN 2020jfo: direct detection, light-curve properties, nebular spectroscopy, and local environment. KILPATRICK C.D., IZZO L., BENTLEY R.O., et al.
2023ApJ...953L..18B 513     A D     X C       11 17 ~ SN 2022acko: The First Early Far-ultraviolet Spectra of a Type IIP Supernova. BOSTROEM K.A., DESSART L., HILLIER D.J., et al.
2024ApJ...960...72S 20       D               1 94 ~ Search for Supernova Progenitor Stars with ZTF and LSST. STROTJOHANN N.L., OFEK E.O., GAL-YAM A., et al.
2024ApJ...964L..27S 20       D               1 37 ~ A Bias-corrected Luminosity Function for Red Supergiant Supernova Progenitor Stars. STROTJOHANN N.L., OFEK E.O. and GAL-YAM A.

goto View the references in ADSLimited to 100