SN 2015bn , the SIMBAD biblio

SN 2015bn , the SIMBAD biblio (94 results) C.D.S. - SIMBAD4 rel 1.7 - 2021.12.03CET21:36:14


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2021A&A...653A.119N 47           X         1 19 ~ Constraining bright optical counterparts of fast radio bursts. NUNEZ C., TEJOS N., PIGNATA G., et al.
2021ApJ...908..217S 93           X         2 13 ~ Two-dimensional radiation-hydrodynamic simulations of supernova ejecta with a central power source. SUZUKI A. and MAEDA K.
2021ApJ...908..249M 140           X C       2 8 ~ Constraints on the rate of supernovae lasting for more than a year from Subaru/Hyper Suprime-Cam. MORIYA T.J., JIANG J.-A., YASUDA N., et al.
2021ApJ...909...24K 980     A D     X C       21 93 ~ Photospheric velocity gradients and ejecta masses of hydrogen-poor superluminous supernovae: proxies for distinguishing between fast and slow events. KONYVES-TOTH R. and VINKO J.
2021ApJ...912...21E 578       D S   X         12 125 ~ Late-time radio and millimeter observations of superluminous supernovae and long gamma-ray bursts: implications for central engines, fast radio bursts, and obscured star formation. EFTEKHARI T., MARGALIT B., OMAND C.M.B., et al.
2021ApJ...913..143G 280           X C       5 20 ~ The luminous and double-peaked Type Ic Supernova 2019stc: evidence for multiple energy sources. GOMEZ S., BERGER E., HOSSEINZADEH G., et al.
2021ApJ...917...77V 933           X C       19 7 ~ Gamma-ray thermalization and leakage from millisecond magnetar nebulae: toward a self-consistent model for superluminous supernovae. VURM I. and METZGER B.D.
2021ApJ...917...97W 93             C       1 27 ~ ASASSN-14ms: the most energetic known explosion of a Type Ibn supernova and its physical origin. WANG X., LIN W., ZHANG J., et al.
2021MNRAS.500.5142F 19       D               1 114 ~ From core collapse to superluminous: the rates of massive stellar explosions from the Palomar Transient Factory. FROHMAIER C., ANGUS C.R., VINCENZI M., et al.
2021MNRAS.502.1678K 653           X C       13 51 ~ SN 2020ank: a bright and fast-evolving H-deficient superluminous supernova. KUMAR A., KUMAR B., PANDEY S.B., et al.
2021MNRAS.502.2120F 420           X C       8 23 ~ SN 2017gci: a nearby Type I Superluminous Supernova with a bumpy tail. FIORE A., CHEN T.-W., JERKSTRAND A., et al.
2021MNRAS.503..312M 140           X         3 25 ~ RINGO3 polarimetry of very young ZTF supernovae. MAUND J.R., YANG Y., STEELE I.A., et al.
2021MNRAS.504L..51S 93           X         2 7 ~ Binary pathways to SLSNe-I: SN 2017gci. STEVANCE H.F. and ELDRIDGE J.J.
2020A&A...643A..47O 18       D               1 93 ~ The interacting nature of dwarf galaxies hosting superluminous supernovae. ORUM S.V., IVENS D.L., STRANDBERG P., et al.
2020ATel14027....1T 90           X         2 4 ~ Spectroscopic classification of 3 transients with Keck and DEIMOS. TERRERAN G., BLANCHARD P.K., BERTON M., et al.
2020ApJ...892...28K 2464     A D     X C       55 20 ~ SN 2010kd: photometric and spectroscopic analysis of a slow-decaying superluminous supernova. KUMAR A., PANDEY S.B., KONYVES-TOTH R., et al.
2020ApJ...894..154S 269           X         6 8 ~ Late-phase spectropolarimetric observations of superluminous supernova SN 2017egm to probe the geometry of the inner ejecta. SAITO S., TANAKA M., MORIYA T.J., et al.
2020ApJ...897..114B 63       D     X         2 67 ~ The pre-explosion mass distribution of hydrogen-poor superluminous supernova progenitors and new evidence for a mass-spin correlation. BLANCHARD P.K., BERGER E., NICHOLL M., et al.
2020ApJ...900...73K 90           X         2 11 ~ Comparative spectral analysis of the superluminous supernova 2019neq. KONYVES-TOTH R., THOMAS B.P., VINKO J., et al.
2020ApJ...901...61L 403           X C       8 27 ~ Four (super)luminous supernovae from the first months of the ZTF survey. LUNNAN R., YAN L., PERLEY D.A., et al.
2020ApJ...904...74G 18       D               1 145 ~ FLEET: a redshift-agnostic machine learning pipeline to rapidly identify hydrogen-poor superluminous supernovae. GOMEZ S., BERGER E., BLANCHARD P.K., et al.
2020MNRAS.494..885S 45           X         1 13 ~ The shape of SN 1993J re-analysed. STEVANCE H.F., BAADE D., BRUTEN J.R., et al.
2020MNRAS.497..318L 1030           X C F     21 15 ~ SN 2018hti: a nearby superluminous supernova discovered in a metal-poor galaxy. LIN W.L., WANG X.F., LI W.X., et al.
2020MNRAS.498.3730M 45           X         1 11 ~ Polarimetry of the superluminous transient ASASSN-15lh. MAUND J.R., LELOUDAS G., MALESANI D.B., et al.
2019A&A...621A.141D 348           X C       7 16 ~ Simulations of light curves and spectra for superluminous Type Ic supernovae powered by magnetars. DESSART L.
2019ApJ...871..102N 975       D S   X C       21 20 ~ Nebular-phase spectra of superluminous supernovae: physical insights from observational and statistical properties. NICHOLL M., BERGER E., BLANCHARD P.K., et al.
2019ApJ...874...68C 44           X         1 32 ~ A systematic study of superluminous supernova light-curve models using clustering. CHATZOPOULOS E. and TUMINELLO R.
2019ApJ...876L..10E 87             C       1 8 ~ A radio source coincident with the superluminous supernova PTF10hgi: evidence for a central engine and an analog of the repeating FRB 121102? EFTEKHARI T., BERGER E., MARGALIT B., et al.
2019ApJ...877...20W 174           X C       3 8 ~ Modeling the light curves of the luminous Type Ic supernova 2007D. WANG S.-Q., CANO Z., LI L., et al.
2019ApJ...881...87G 131           X C       2 20 ~ SN 2016iet: the pulsational or pair instability explosion of a low-metallicity massive CO core embedded in a dense hydrogen-poor circumstellar medium. GOMEZ S., BERGER E., NICHOLL M., et al.
2019MNRAS.482.1545S 87               F     1 32 ~ The Berkeley sample of stripped-envelope supernovae. SHIVVERS I., FILIPPENKO A.V., SILVERMAN J.M., et al.
2019MNRAS.482.4057M 131           X         3 7 ~ RINGO3 polarimetry of the Type I superluminous SN 2017egm. MAUND J.R., STEELE I., JERMAK H., et al.
2019MNRAS.484.3451M 392   K       X         9 7 ~ The nature of PISN candidates: clues from nebular spectra. MAZZALI P.A., MORIYA T.J., TANAKA M., et al.
2019MNRAS.484.5468O 44           X         1 9 ~ Dust formation in embryonic pulsar-aided supernova remnants. OMAND C.M.B., KASHIYAMA K. and MURASE K.
2019MNRAS.489.3591P 174           X C       3 164 ~ Anomaly detection in the Open Supernova Catalog. PRUZHINSKAYA M.V., MALANCHEV K.L., KORNILOV M.V., et al.
2019PASP..131a4002H 87             C       1 173 ~ Carnegie Supernova Project-II: the near-infrared spectroscopy program. HSIAO E.Y., PHILLIPS M.M., MARION G.H., et al.
2019RAA....19...63W 131           X         3 28 ~ The Energy Sources of Superluminous Supernovae. WANG S.-Q., WANG L.-J. and DAI Z.-G.
2018A&A...611A..45R 128           X         3 47 6 Search for γ-ray emission from superluminous supernovae with the Fermi-LAT. RENAULT-TINACCI N., KOTERA K., NERONOV A., et al.
2018A&A...620A..67A 213           X         5 25 ~ A nearby super-luminous supernova with a long pre-maximum & "plateau" and strong C II features. ANDERSON J.P., PESSI P.J., DESSART L., et al.
2018ApJ...853...57B 851           X C       19 27 23 Gaia17biu/SN 2017egm in NGC 3191: the closest hydrogen-poor superluminous supernova to date is in a "normal," massive, metal-rich spiral galaxy. BOSE S., DONG S., PASTORELLO A., et al.
2018ApJ...854...37S 43           X         1 13 5 Studying the ultraviolet spectrum of the first spectroscopically confirmed Supernova at redshift two. SMITH M., SULLIVAN M., NICHOL R.C., et al.
2018ApJ...854..175I 102       D       C       2 48 6 A statistical approach to identify superluminous supernovae and probe their diversity. INSERRA C., PRAJS S., GUTIERREZ C.P., et al.
2018ApJ...856...56C 613       D     X C F     13 26 9 Jets in hydrogen-poor superluminous supernovae: constraints from a comprehensive analysis of radio observations. COPPEJANS D.L., MARGUTTI R., GUIDORZI C., et al.
2018ApJ...858..115A 170           X C       3 5 4 Related progenitor models for long-duration gamma-ray bursts and Type Ic superluminous supernovae. AGUILERA-DENA D.R., LANGER N., MORIYA T.J., et al.
2018ApJ...860..100D viz 43           X         1 42 24 Light curves of hydrogen-poor superluminous supernovae from the Palomar Transient Factory. DE CIA A., GAL-YAM A., RUBIN A., et al.
2018ApJ...864...45M viz 868       D S   X C       19 37 18 Results from a systematic survey of X-ray emission from hydrogen-poor superluminous SNe. MARGUTTI R., CHORNOCK R., METZGER B.D., et al.
2018ApJ...864L..36M 85             C       1 16 ~ Evidence for a pulsar wind nebula in the Type Ib peculiar supernova SN 2012au. MILISAVLJEVIC D., PATNAUDE D.J., CHEVALIER R.A., et al.
2018ApJ...865....9B 1686     A     X C       39 18 3 The Type I superluminous supernova PS16aqv: lightcurve complexity and deep limits on radioactive ejecta in a fast event. BLANCHARD P.K., NICHOLL M., BERGER E., et al.
2018ApJ...866L..24N 1856 T K A     X C       42 11 1 One thousand days of
SN2015bn: HST imaging shows a light curve flattening consistent with magnetar predictions.
NICHOLL M., BLANCHARD P.K., BERGER E., et al.
2018ApJ...867..113M 17       D               2 37 ~ Systematic investigation of the fallback accretion-powered model for hydrogen-poor superluminous supernovae. MORIYA T.J., NICHOLL M. and GUILLOCHON J.
2018ApJ...868L..32B 1005 T K A     X C       22 9 ~ Where is the engine hiding its missing energy? Constraints from a deep X-ray non-detection of the superluminous
SN 2015bn.
BHIROMBHAKDI K., CHORNOCK R., MARGUTTI R., et al.
2018ApJ...869..166V 60       D     X         2 58 ~ Superluminous supernovae in LSST: rates, detection metrics, and light-curve modeling. VILLAR V.A., NICHOLL M. and BERGER E.
2018MNRAS.473.1258S 17       D               3 75 37 Cosmic evolution and metal aversion in superluminous supernova host galaxies. SCHULZE S., KRUHLER T., LELOUDAS G., et al.
2018MNRAS.474..573O 188       D     X         5 9 9 Radio emission from embryonic superluminous supernova remnants. OMAND C.M.B., KASHIYAMA K. and MURASE K.
2018MNRAS.475.1046I 44           X         1 23 41 On the nature of hydrogen-rich superluminous supernovae. INSERRA C., SMARTT S.J., GALL E.E.E., et al.
2018MNRAS.475.2659M 640   K   S   X C F     12 10 19 The GRB-SLSN connection: misaligned magnetars, weak jet emergence, and observational signatures. MARGALIT B., METZGER B.D., THOMPSON T.A., et al.
2018MNRAS.478..110S 383           X         9 16 ~ Broad-band emission properties of central engine-powered supernova ejecta interacting with a circumstellar medium. SUZUKI A. and MAEDA K.
2018MNRAS.479.4984C 85           X         2 10 ~ Testing the magnetar scenario for superluminous supernovae with circular polarimetry. CIKOTA A., LELOUDAS G., BULLA M., et al.
2018MNRAS.480.1393C 43           X         1 4 ~ Polarization of MeV gamma-rays and 511 keV line shape as probesof SNIa asymmetry and magnetic field. CHURAZOV E. and KHABIBULLIN I.
2018NatAs...2..887L 14 ~ A UV resonance line echo from a shell around a hydrogen-poor superluminous supernova. LUNNAN R., FRANSSON C., VREESWIJK P.M., et al.
2017A&A...602A...9C 85           X         2 25 28 The evolution of superluminous supernova LSQ14mo and its interacting host galaxy system. CHEN T.-W., NICHOLL M., SMARTT S.J., et al.
2017ATel10537....1R 42           X         1 2 ~ Stringent radio constraint on the exceptional super-luminous supernova SN2017egm. ROMERO-CANIZALES C., BESWICK R., DONG S., et al.
2017ApJ...835...13J 2325   K A S   X C       54 22 41 Long-duration superluminous supernovae at late times. JERKSTRAND A., SMARTT S.J., INSERRA C., et al.
2017ApJ...835...58V viz 85           X         2 14 27 On the early-time excess emission in hydrogen-poor superluminous supernovae. VREESWIJK P.M., LELOUDAS G., GAL-YAM A., et al.
2017ApJ...835L...8N 545           X C F     11 13 29 An ultraviolet excess in the superluminous supernova Gaia16apd reveals a powerful central engine. NICHOLL M., BERGER E., MARGUTTI R., et al.
2017ApJ...837L..14L 1449 T K A     X C       33 4 14 Time-resolved polarimetry of the superluminous
SN 2015bn with the Nordic Optical Telescope.
LELOUDAS G., MAUND J.R., GAL-YAM A., et al.
2017ApJ...839L...6S 44           X         1 3 7 The magnetar model of the superluminous supernova Gaia16apd and the explosion jet feedback mechanism. SOKER N.
2017ApJ...840...12Y 184       D     X         5 38 21 A statistical study of superluminous supernovae using the magnetar engine model and implications for their connection with gamma-ray bursts and hypernovae. YU Y.-W., ZHU J.-P., LI S.-Z., et al.
2017ApJ...840...57Y 126           X         3 22 33 Far-ultraviolet to near-infrared spectroscopy of a nearby hydrogen-poor superluminous supernova Gaia16apd. YAN L., QUIMBY R., GAL-YAM A., et al.
2017ApJ...841...14M 51           X         1 10 90 Millisecond magnetar birth connects FRB 121102 to superluminous supernovae and long-duration gamma-ray bursts. METZGER B.D., BERGER E. and MARGALIT B.
2017ApJ...842...26L 393       D     X C       9 26 15 A Monte Carlo approach to magnetar-powered transients. I. Hydrogen-deficient superluminous supernovae. LIU L.-D., WANG S.-Q., WANG L.-J., et al.
2017ApJ...845...85L viz 142       D     X         4 47 35 Analyzing the largest spectroscopic data set of hydrogen-poor super-luminous supernovae. LIU Y.-Q., MODJAZ M. and BIANCO F.B.
2017ApJ...845L...8N 46           X         1 4 18 The superluminous supernova SN 2017egm in the nearby galaxy NGC 3191: a metal-rich environment can support a typical SLSN evolution. NICHOLL M., BERGER E., MARGUTTI R., et al.
2017ApJ...848....6Y 778     A     X C       18 23 26 Hydrogen-poor superluminous supernovae with late-time Hα emission: three events from the intermediate Palomar Transient Factory. YAN L., LUNNAN R., PERLEY D.A., et al.
2017ApJ...850...55N 644       D     X C       15 41 37 The magnetar model for Type I superluminous supernovae. I. Bayesian analysis of the full multicolor light-curve sample with MOSFiT. NICHOLL M., GUILLOCHON J. and BERGER E.
2017ApJ...851...95S 59       D     X         2 24 13 Magnetar-powered superluminous supernovae must first be exploded by jets. SOKER N. and GILKIS A.
2017ApJ...851L..14W 126           X C       2 5 5 Circumstellar interaction models for the bolometric light curve of Type I superluminous SN 2017egm. WHEELER J.C., CHATZOPOULOS E., VINKO J., et al.
2017MNRAS.464.2672H viz 17       D               1 171 19 The ASAS-SN bright supernova catalogue - I. 2013-2014. HOLOIEN T.W.-S., STANEK K.Z., KOCHANEK C.S., et al.
2017MNRAS.466.1428G 546           X         13 11 34 The unexpected, long-lasting, UV rebrightening of the superluminous supernova ASASSN-15lh. GODOY-RIVERA D., STANEK K.Z., KOCHANEK C.S., et al.
2017MNRAS.466.2633S 43           X         1 13 17 Supernova ejecta with a relativistic wind from a central compact object: a unified picture for extraordinary supernovae. SUZUKI A. and MAEDA K.
2017MNRAS.468.1226G 42           X         1 26 16 Core collapse supernova remnants with ears. GRICHENER A. and SOKER N.
2017MNRAS.468.4642I 2717   K A D     X C F     64 35 26 Complexity in the light curves and spectra of slow-evolving superluminous supernovae. INSERRA C., NICHOLL M., CHEN T.-W., et al.
2017MNRAS.469.1246K 545           X C       12 13 26 Gaia16apd - a link between fast and slowly declining type I superluminous supernovae. KANGAS T., BLAGORODNOVA N., MATTILA S., et al.
2017MNRAS.470..197Y 867     A S   X C F     18 1 6 A possible relation between flare activity in super-luminous supernovae and gamma-ray bursts. YU Y.-W. and LI S.-Z.
2017MNRAS.470.3566C 561   K   D     X   F     13 22 37 Superluminous supernova progenitors have a half-solar metallicity threshold. CHEN T.-W., SMARTT S.J., YATES R.M., et al.
2016ATel.8552....1A 208 T         X         4 1 2 VLA search for a radio counterpart to the superluminous supernova
PS15ae.
ALEXANDER K.D., NICHOLL M., BERGER E., et al.
2016ApJ...826...39N 6671 T K A D     X C       161 18 60 SN 2015BN: a detailed multi-wavelength view of a nearby superluminous supernova. NICHOLL M., BERGER E., SMARTT S.J., et al.
2016ApJ...828...94C 128           X         3 4 22 Extreme supernova models for the super-luminous transient ASASSN-15lh. CHATZOPOULOS E., WHEELER J.C., VINKO J., et al.
2016ApJ...828L..18N 1016 T K A     X C       23 9 34 Superluminous supernova
SN 2015bn in the nebular phase: evidence for the engine-powered explosion of a stripped massive star.
NICHOLL M., BERGER E., MARGUTTI R., et al.
2016ApJ...831...79I 1715   K A S   X C       40 11 35 Spectropolarimetry of superluminous supernovae: insight into their geometry. INSERRA C., BULLA M., SIM S.A., et al.
2016ApJ...831..144L 43           X         1 14 40 PS1-14bj: a hydrogen-poor superluminous supernova with a long rise and slow decay. LUNNAN R., CHORNOCK R., BERGER E., et al.
2016MNRAS.460L..55M 16       D               1 23 10 Constraining the ellipticity of strongly magnetized neutron stars powering superluminous supernovae. MORIYA T.J. and TAURIS T.M.
2015ATel.7102....1L 41           X         1 10 6 PESSTO spectroscopic classification of optical transients. LE GUILLOU L., MITRA A., BAUMONT S., et al.
2015ATel.7156....1D 162           X         4 11 2 Palomar spectroscopic classification of CRTS optical transients. DRAKE A.J., STERN D., DJORGOVSKI S.G., et al.

goto View the references in ADS


2021.12.03-21:36:15

© Université de Strasbourg/CNRS

    • Contact