iPTF 13ehe , the SIMBAD biblio

iPTF 13ehe , the SIMBAD biblio (70 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.04.20CEST04:09:46


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2015ApJ...814..108Y 2887   K A S   X C       71 9 72 Detection of broad Hα emission lines in the late-time spectra of a hydrogen-poor superluminous supernova. YAN L., QUIMBY R., OFEK E., et al.
2015A&A...584L...5M 1616   K A S   X         40 2 17 Revealing the binary origin of Type Ic superluminous supernovae through nebular hydrogen emission. MORIYA T.J., LIU Z.-W., MacKEY J., et al.
2016ApJ...817..132D 125           X C       2 10 52 The most luminous supernova ASASSN-15lh: signature of a newborn rapidly rotating strange quark star. DAI Z.G., WANG S.Q., WANG J.S., et al.
2016ApJ...818...77O 763   K A D S   X C       18 10 7 Quark-novae occurring in massive binaries : a universal energy source in superluminous supernovae with double-peaked light curves. OUYED R., LEAHY D. and KONING N.
2016ApJ...820...75P 120           X         3 47 24 Line identifications of Type I supernovae: on the detection of Si II for these hydrogen-poor events. PARRENT J.T., MILISAVLJEVIC D., SODERBERG A.M., et al.
2016MNRAS.457..351Y 42           X         1 7 14 Mass ejection by pulsational pair instability in very massive stars and implications for luminous supernovae. YOSHIDA T., UMEDA H., MAEDA K., et al.
2016ApJ...826...39N 87           X         2 18 133 SN 2015BN: a detailed multi-wavelength view of a nearby superluminous supernova. NICHOLL M., BERGER E., SMARTT S.J., et al.
2016ApJ...826..178G 86           X         2 6 37 Explaining the most energetic supernovae with an inefficient jet-feedback mechanism. GILKIS A., SOKER N. and PAPISH O.
2016MNRAS.460L..55M 16       D               1 23 10 Constraining the ellipticity of strongly magnetized neutron stars powering superluminous supernovae. MORIYA T.J. and TAURIS T.M.
2015ATel.8086....1B 41           X         1 2 6 Ultraviolet Rebrightening of Superluminous Supernova ASASSN-15lh. BROWN P.J.
2016ApJ...828....3B viz 81           X         2 15 22 ASASSN-15lh: a superluminous ultraviolet rebrightening observed by Swift and Hubble. BROWN P.J., YANG Y., COOKE J., et al.
2016ApJ...828...87W 1375 T K A D S   X C       32 3 30 A triple-energy-source model for superluminous supernova
iPTF13ehe.
WANG S.Q., LIU L.D., DAI Z.G., et al.
2016ApJ...829...17S 48           X         1 7 60 Type I superluminous supernovae as explosions inside non-hydrogen circumstellar envelopes. SOROKINA E., BLINNIKOV S., NOMOTO K., et al.
2015ATel.8216....1M 41           X         1 2 6 Optical spectroscopy of ASASSN-15lh reveal no clear signs of interaction with an H-rich circumstellar environment. MILISAVLJEVIC D., JAMES D.J., MARSHALL J.L., et al.
2016ApJ...831..144L 404           X C       9 14 54 PS1-14bj: a hydrogen-poor superluminous supernova with a long rise and slow decay. LUNNAN R., CHORNOCK R., BERGER E., et al.
2017ApJ...835...13J 45           X         1 22 99 Long-duration superluminous supernovae at late times. JERKSTRAND A., SMARTT S.J., INSERRA C., et al.
2017ApJ...835...58V viz 43           X         1 14 40 On the early-time excess emission in hydrogen-poor superluminous supernovae. VREESWIJK P.M., LELOUDAS G., GAL-YAM A., et al.
2017ApJ...835..140M 41           X         1 194 134 Ejection of the massive hydrogen-rich envelope timed with the collapse of the stripped SN 2014C. MARGUTTI R., KAMBLE A., MILISAVLJEVIC D., et al.
2017ApJ...836...25M viz 48           X         1 9 63 X-rays from the location of the double-humped transient ASASSN-15lh. MARGUTTI R., METZGER B.D., CHORNOCK R., et al.
2017MNRAS.466.1428G 247           X         6 11 38 The unexpected, long-lasting, UV rebrightening of the superluminous supernova ASASSN-15lh. GODOY-RIVERA D., STANEK K.Z., KOCHANEK C.S., et al.
2017ApJ...840...12Y 139       D     X         4 38 51 A statistical study of superluminous supernovae using the magnetar engine model and implications for their connection with gamma-ray bursts and hypernovae. YU Y.-W., ZHU J.-P., LI S.-Z., et al.
2017A&A...602A...9C 42           X         1 25 37 The evolution of superluminous supernova LSQ14mo and its interacting host galaxy system. CHEN T.-W., NICHOLL M., SMARTT S.J., et al.
2017MNRAS.468.4642I 82           X         2 35 37 Complexity in the light curves and spectra of slow-evolving superluminous supernovae. INSERRA C., NICHOLL M., CHEN T.-W., et al.
2017ApJ...845...85L viz 342       D     X C       8 47 77 Analyzing the largest spectroscopic data set of hydrogen-poor super-luminous supernovae. LIU Y.-Q., MODJAZ M. and BIANCO F.B.
2017MNRAS.469.4705C 82           X         2 6 6 Spatially resolved analysis of superluminous supernovae PTF 11hrq and PTF 12dam host galaxies. CIKOTA A., DE CIA A., SCHULZE S., et al.
2017ApJ...848....6Y 1303   K A D     X C       32 23 91 Hydrogen-poor superluminous supernovae with late-time Hα emission: three events from the intermediate Palomar Transient Factory. YAN L., LUNNAN R., PERLEY D.A., et al.
2017ApJ...850...55N 142       D     X         4 41 176 The magnetar model for Type I superluminous supernovae. I. Bayesian analysis of the full multicolor light-curve sample with MOSFiT. NICHOLL M., GUILLOCHON J. and BERGER E.
2017ApJ...851...95S 17       D               1 24 24 Magnetar-powered superluminous supernovae must first be exploded by jets. SOKER N. and GILKIS A.
2018ApJ...854..175I 428       D     X C       10 48 19 A statistical approach to identify superluminous supernovae and probe their diversity. INSERRA C., PRAJS S., GUTIERREZ C.P., et al.
2018MNRAS.475.1046I 210           X C F     3 23 103 On the nature of hydrogen-rich superluminous supernovae. INSERRA C., SMARTT S.J., GALL E.E.E., et al.
2018ApJ...856...59L 83           X         2 7 11 A multiple ejecta-circumstellar medium interaction model and its implications for superluminous supernovae iPTF15esb and iPTF13dcc. LIU L.-D., WANG L.-J., WANG S.-Q., et al.
2018A&A...611A..45R 82           X         2 47 13 Search for γ-ray emission from superluminous supernovae with the Fermi-LAT. RENAULT-TINACCI N., KOTERA K., NERONOV A., et al.
2018ApJ...860..100D viz 471       D     X         12 41 119 Light curves of hydrogen-poor superluminous supernovae from the Palomar Transient Factory. DE CIA A., GAL-YAM A., RUBIN A., et al.
2018ApJ...864...45M viz 223       D     X         6 37 58 Results from a systematic survey of X-ray emission from hydrogen-poor superluminous SNe. MARGUTTI R., CHORNOCK R., METZGER B.D., et al.
2018ApJ...865....9B 41           X         1 18 9 The Type I superluminous supernova PS16aqv: lightcurve complexity and deep limits on radioactive ejecta in a fast event. BLANCHARD P.K., NICHOLL M., BERGER E., et al.
2018NatAs...2..887L 1 14 14 A UV resonance line echo from a shell around a hydrogen-poor superluminous supernova. LUNNAN R., FRANSSON C., VREESWIJK P.M., et al.
2018ApJ...867L..31C 84           X         2 16 40 SN 2017ens: the metamorphosis of a luminous broadlined Type Ic supernova into an SN IIn. CHEN T.-W., INSERRA C., FRASER M., et al.
2018ApJ...867..113M 16       D               2 37 11 Systematic investigation of the fallback accretion-powered model for hydrogen-poor superluminous supernovae. MORIYA T.J., NICHOLL M. and GUILLOCHON J.
2018ApJ...869..166V 16       D               1 58 6 Superluminous supernovae in LSST: rates, detection metrics, and light-curve modeling. VILLAR V.A., NICHOLL M. and BERGER E.
2019ApJ...874...68C 17       D               1 32 1 A systematic study of superluminous supernova light-curve models using clustering. CHATZOPOULOS E. and TUMINELLO R.
2019A&A...624A.143K 85           X         2 64 71 Highly luminous supernovae associated with gamma-ray bursts. I. GRB 111209A/SN 2011kl in the context of stripped-envelope and superluminous supernovae. KANN D.A., SCHADY P., OLIVARES F.E., et al.
2019RAA....19...63W 209           X C       4 28 3 The Energy Sources of Superluminous Supernovae. WANG S.-Q., WANG L.-J. and DAI Z.-G.
2019MNRAS.487.2215A 44           X         1 26 67 Superluminous supernovae from the Dark Energy Survey. ANGUS C.R., SMITH M., SULLIVAN M., et al.
2019MNRAS.489.1110W 42           X         1 6 ~ Broad-lined type Ic supernova iPTF16asu: A challenge to all popular models. WANG L.J., WANG X.F., CANO Z., et al.
2020ApJ...891...98L 43           X         1 16 ~ The energy sources of double-peaked superluminous supernova PS1-12cil and luminous supernova SN 2012aa. LI L., WANG S.-Q., LIU L.-D., et al.
2020ApJ...892...28K 85           X         2 20 ~ SN 2010kd: photometric and spectroscopic analysis of a slow-decaying superluminous supernova. KUMAR A., PANDEY S.B., KONYVES-TOTH R., et al.
2020ApJ...897..114B 17       D               1 67 ~ The pre-explosion mass distribution of hydrogen-poor superluminous supernova progenitors and new evidence for a mass-spin correlation. BLANCHARD P.K., BERGER E., NICHOLL M., et al.
2020MNRAS.497..318L 553           X C F     11 15 ~ SN 2018hti: a nearby superluminous supernova discovered in a metal-poor galaxy. LIN W.L., WANG X.F., LI W.X., et al.
2020ApJ...904...74G 17       D               1 145 ~ FLEET: a redshift-agnostic machine learning pipeline to rapidly identify hydrogen-poor superluminous supernovae. GOMEZ S., BERGER E., BLANCHARD P.K., et al.
2020A&A...643A..47O 60       D     X         2 93 ~ The interacting nature of dwarf galaxies hosting superluminous supernovae. ORUM S.V., IVENS D.L., STRANDBERG P., et al.
2021ApJ...909...24K 17       D               2 93 ~ Photospheric velocity gradients and ejecta masses of hydrogen-poor superluminous supernovae: proxies for distinguishing between fast and slow events. KONYVES-TOTH R. and VINKO J.
2021MNRAS.502.1678K 87           X         2 51 12 SN 2020ank: a bright and fast-evolving H-deficient superluminous supernova. KUMAR A., KUMAR B., PANDEY S.B., et al.
2021MNRAS.504L..51S 174           X         4 7 ~ Binary pathways to SLSNe-I: SN 2017gci. STEVANCE H.F. and ELDRIDGE J.J.
2021MNRAS.504.2073K 45           X         1 35 51 A cool and inflated progenitor candidate for the Type Ib supernova 2019yvr at 2.6 yr before explosion. KILPATRICK C.D., DROUT M.R., AUCHETTL K., et al.
2021ApJ...913..143G viz 44           X         1 20 17 The luminous and double-peaked Type Ic Supernova 2019stc: evidence for multiple energy sources. GOMEZ S., BERGER E., HOSSEINZADEH G., et al.
2021ApJS..255...29S viz 17       D               1 893 63 The Palomar Transient Factory core-collapse supernova host-galaxy sample. I. Host-galaxy distribution functions and environment dependence of core-collapse supernovae. SCHULZE S., YARON O., SOLLERMAN J., et al.
2022MNRAS.510.3701S 45           X         1 17 15 An environmental analysis of the Type Ib SN 2019yvr and the possible presence of an inflated binary companion. SUN N.-C., MAUND J.R., CROWTHER P.A., et al.
2022MNRAS.512.4484F 582           X C F     11 24 4 Close, bright, and boxy: the superluminous SN 2018hti. FIORE A., BENETTI S., NICHOLL M., et al.
2022MNRAS.513.2965H 90           X         2 12 ~ Two years of optical and NIR observations of the superluminous supernova UID 30901 discovered by the UltraVISTA SN survey. HUEICHAPAN E.D., CONTRERAS C., CARTIER R., et al.
2022ApJ...938...84D 45           X         1 34 6 Radio Analysis of SN2004C Reveals an Unusual CSM Density Profile as a Harbinger of Core Collapse. DEMARCHI L., MARGUTTI R., DITTMAN J., et al.
2022A&A...666A..30P 448           X C       9 43 14 SN 2018bsz: A Type I superluminous supernova with aspherical circumstellar material. PURSIAINEN M., LELOUDAS G., PARASKEVA E., et al.
2022ApJ...940...69K 108       D     X         3 32 2 Premaximum Spectroscopic Diversity of Hydrogen-poor Superluminous Supernovae. KONYVES-TOTH R.
2022ApJ...939..105B 332       D S   X         7 121 10 Seven Years of Coordinated Chandra-NuSTAR Observations of SN 2014C Unfold the Extreme Mass-loss History of Its Stellar Progenitor. BRETHAUER D., MARGUTTI R., MILISAVLJEVIC D., et al.
2022ApJ...941..107G 45           X         1 238 16 Luminous Supernovae: Unveiling a Population between Superluminous and Normal Core-collapse Supernovae. GOMEZ S., BERGER E., NICHOLL M., et al.
2023NatAs...7..779L 47           X         1 16 ~ A superluminous supernova lightened by collisions with pulsational pair-instability shells. LIN W., WANG X., YAN L., et al.
2023ApJ...954...44K 19       D               1 29 ~ Type W and Type 15bn Subgroups of Hydrogen-poor Superluminous Supernovae: Premaximum Diversity, Postmaximum Homogeneity? KONYVES-TOTH R. and SELI B.
2020RNAAS...4..235B 43           X         1 4 ~ Six Years of Luminous X-Ray Emission from the Strongly Interacting Type-Ib SN2014C Captured by Chandra and NuSTAR. BRETHAUER D., MARGUTTI R., MILISAVLJEVIC D., et al.
2023ApJ...954L..45M 47           X         1 14 ~ Luminous Radio Emission from the Superluminous Supernova 2017ens at 3.3 yr after Explosion. MARGUTTI R., BRIGHT J.S., MATTHEWS D.J., et al.
2023MNRAS.526.1822K 112       D         F     2 31 ~ Reduction of supernova light curves by vector Gaussian processes. KORNILOV M.V., SEMENIKHIN T.A. and PRUZHINSKAYA M.V.
2024ApJ...961..169H 20       D               2 110 ~ An Extensive Hubble Space Telescope Study of the Offset and Host Light Distributions of Type I Superluminous Supernovae. HSU B., BLANCHARD P.K., BERGER E., et al.

goto View the references in ADS