SIMBAD references

2000A&A...360..171R - Astronomy and Astrophysics, volume 360, 171-184 (2000/8-1)

Merging neutron stars: asymmetric systems.

ROSSWOG S., DAVIES M.B., THIELEMANN F.-K. and PIRAN T.

Abstract (from CDS):

We present the results of 3D, Newtonian hydrodynamic calculations of the last stages of the inspiral and the final coalescence of neutron star binary systems. Our focus is on slightly asymmetric systems, where the asymmetry stems from either different masses (1.3 and 1.4M) or spins of both components. Almost immediately after contact a fast rotating, very massive central object forms. All calculations exhibit baryonic masses above 2.3M, thus based on our calculations it is not possible to decide on the fate of the central core of the merged configuration. It might collapse immediately to a black hole, but also the creation of a supermassive neutron star with ∼2.8M cannot firmly be excluded. Depending on the asymmetry of the system the central object receives a kick of several hundred kilometers per second. Different spins of both components do not jeopardize the formation of (to within numerical resolution) baryon free funnels above the poles of the central objects. In the case of different masses the less massive components get disrupted and engulf the more massive companions that stay rather unaffected by the collision. The amount of ejected material is in a similar range as for symmetric systems and could contribute substantially to the enrichment of the Galaxy with heavy r-process elements. Test calculations indicate that the amount of ejected material is basically determined by the high density behaviour of the nuclear equation of state. Test calculations for the hybrid artificial viscosity scheme that is used for this work are given in the appendix.

Abstract Copyright:

Journal keyword(s): hydrodynamics - stars: binaries: close - stars: neutron - gamma rays: bursts

Simbad objects: 2

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2000A&A...360..171R and select 'bookmark this link' or equivalent in the popup menu