SIMBAD references

2000A&A...360.1117J - Astronomy and Astrophysics, volume 360, 1117-1125 (2000/8-3)

ISO-LWS observations of rotational CO lines from C-rich objects: AFGL 2688, AFGL 618 and NGC 7027.

JUSTTANONT K., BARLOW M.J., TIELENS A.G.G.M., HOLLENBACH D., LATTER W.B., LIU X.-W., SYLVESTER R.J., COX P., RIEU N.-Q. and SKINNER C.J.

Abstract (from CDS):

We present ISO-LWS full scan observations of CO rotational emission lines (J=14-13 up to J=37-36) from two C-rich post-AGB objects, AFGL 2688; AFGL 618, and one C-rich PN, NGC 7027. The presence of high rotational lines cannot be explained by a spherical, constant velocity wind during the previous AGB phase, but indicates a layer of warm, dense gas with a substantial beam filling factor (Ω>10–10sr). By simple optically thin calculations, we estimate the total mass of gas cooled through CO rotational lines to be typically ∼0.1M. We also consider the physical processes responsible for heating and cooling the warm gas in these objects. Energy sources for the gas could include FUV photons, resulting in a PhotoDissociation Region (PDR), as well as shocks driven by the interacting winds during this evolutionary phase. We have calculated detailed models for the heating and cooling in C-rich PDRs and shocks in order to explain the CO spectra observed. In both models, the gas is cooled radiatively by molecular rotational lines as well as by atomic fine structure lines. Both models can produce warm gas of >500K at a density of 106-107cm–3. We conclude that the source of heating for the young PN, NGC 7027, is FUV photons from the central star. For the least evolved post-AGB star, AFGL 2688, the effective temperature is too cool to produce many FUV photons to heat the gas. However, there is evidence of a fast wind developing and hence the most likely heating mechanism for the envelope is shocks. For AFGL 618, the central star is hot enough to provide copious amounts of FUV photons but fast outflows have also been observed and both processes may be operational. However, in view of [O I] 63µm high resolution observations, the heating mechanism is more likely to be a PDR.

Abstract Copyright:

Journal keyword(s): stars: circumstellar matter - stars: evolution - stars: individual: NGC 7027, AFGL 618, AFGL 2688 - stars: late-type - stars: mass-loss - infrared: stars

Simbad objects: 5

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2000A&A...360.1117J and select 'bookmark this link' or equivalent in the popup menu


2021.07.27-09:51:47

© Université de Strasbourg/CNRS

    • Contact