SIMBAD references

2001A&A...377..175K - Astronomy and Astrophysics, volume 377, 175-191 (2001/10-1)

Multicomponent radiatively driven stellar winds. II. Gayley-Owocki heating in multitemperature winds of OB stars.


Abstract (from CDS):

We show that the so-called Gayley-Owocki (Doppler) heating is important for the temperature structure of the wind of main sequence stars cooler than the spectral type O6. The formula for Gayley-Owocki heating is derived directly from the Boltzmann equation as a direct consequence of the dependence of the driving force on the velocity gradient. Since Gayley-Owocki heating deposits heat directly on the absorbing ions, we also investigated the possibility that individual components of the radiatively driven stellar wind have different temperatures. This effect is negligible in the wind of O stars, whereas a significant temperature difference takes place in the winds of main sequence B stars for stars cooler than B2. Typical temperature differences between absorbing ions and other flow components for such stars is of the order 103K. However, in the case when the passive component falls back onto the star, the absorbing component reaches temperatures of order 106K, which allows for emission of X-rays. Moreover, we compare our computed terminal velocities with the observed ones. We found quite good agreement between predicted and observed terminal velocities. The systematic difference coming from the using of the so called ``cooking formula'' has been removed.

Abstract Copyright:

Journal keyword(s): hydrodynamics - stars: mass-loss - stars: early-type - stars: winds, outflows

Simbad objects: 48

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2001A&A...377..175K and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact