2007A&A...474..599P


Query : 2007A&A...474..599P

2007A&A...474..599P - Astronomy and Astrophysics, volume 474, 599-608 (2007/11-1)

The molecular and dusty composition of Betelgeuse's inner circumstellar environment.

PERRIN G., VERHOELST T., RIDGWAY S.T., CAMI J., NGUYEN Q.N., CHESNEAU O., LOPEZ B., LEINERT C. and RICHICHI A.

Abstract (from CDS):

The study of the atmosphere of red supergiant stars in general and of Betelgeuse ({alpha} Orionis) in particular is of prime importance to understand dust formation and how mass is lost to the interstellar medium in evolved massive stars. A molecular shell, the MOLsphere (Tsuji, 2000ApJ...538..801T), in the atmosphere of Betelgeuse has been proposed to account for the near- and mid-infrared spectroscopic observations of Betelgeuse. The goal is to further test this hypothesis and to identify some of the molecules in this MOLsphere. We report on measurements taken with the mid-infrared two-telescope beam combiner of the VLTI, MIDI, operated between 7.5 and 13.5 µm. The data are compared to a simple geometric model of a photosphere surrounded by a warm absorbing and emitting shell. Physical characteristics of the shell are derived: size, temperature and optical depth. The chemical constituents are determined with an analysis consistent with available infrared spectra and interferometric data. The MIDI data are well modeled with a geometrically thin shell whose radius varies from 1.31 to 1.43R* across the N band with a typical temperature of 1550 K. We are able to account for the measured optical depth of the shell in the N band, the ISO-SWS spectrum and K and L band interferometric data with a shell whose inner and outer radii are given by the above range and with the following species and densities: H2O (7.1±4.7x1019cm–2), SiO (4.0±1.1x1020cm–2), Al2O3 (2.4±0.5x1015cm–2). These results confirm the MOLsphere model. We bring evidence for more constituents and for the presence of species participating in the formation of dust grains in the atmosphere of the star, i.e. well below the distance at which the dust shell is detected. We believe these results bring key elements to the understanding of mass loss in Betelgeuse and red supergiants in general and bring support to the dust-driven scenario.

Abstract Copyright:

Journal keyword(s): techniques: interferometric - stars: fundamental parameters - stars: mass-loss - stars: individual: Betelgeuse - infrared: stars

Simbad objects: 8

goto Full paper

goto View the references in ADS

Number of rows : 8
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 * omi Cet Mi* 02 19 20.79210 -02 58 39.4956   7.63 6.53 5.03   M5-9IIIe+DA 1528 0
2 * eta Eri PM* 02 56 25.6492431840 -08 53 53.316500640 5.97 4.99 3.87 3.08 2.50 K1+IIIb 191 0
3 * bet Lep PM* 05 28 14.7228880318 -20 45 33.997988694 4.13 3.66 2.84 2.19 1.75 G5II-IIIa: 239 0
4 * 56 Ori V* 05 52 26.4385770120 +01 51 18.496311408   6.130 4.750     K2-IIb 113 0
5 * alf Ori s*r 05 55 10.30536 +07 24 25.4304 4.38 2.27 0.42 -1.17 -2.45 M1-M2Ia-Iab 1670 0
6 * 17 Mon * 06 47 19.8301708488 +08 02 14.122870224 7.82 6.17 4.77 3.74 3.04 K4III 118 0
7 * alf Sco s*r 16 29 24.45970 -26 25 55.2094 4.08 2.75 0.91 -0.64 -1.87 M1.5Iab+B2Vn 746 0
8 * mu. Cep s*r 21 43 30.4595558543 +58 46 48.165937434 8.85 6.43 4.08 1.98 0.22 M2-Ia 669 1

To bookmark this query, right click on this link: simbad:objects in 2007A&A...474..599P and select 'bookmark this link' or equivalent in the popup menu