SIMBAD references

2008A&A...488L..21H - Astronomy and Astrophysics, volume 488, L21-24 (2008/9-3)

First detection of CO lines in a water fountain star.

HE J.H., IMAI H., HASEGAWA T.I., CAMPBELL S.W. and NAKASHIMA J.

Abstract (from CDS):

Water fountain stars are very young post-AGB stars with high velocity water maser jets. They are the best objects in which to study the onset of bipolar jets from evolved stars due to their young dynamical ages. However, none of them has been observed in any thermal lines. We aim to search for CO lines in the water fountain star IRAS16342-3814 and investigate the properties of its thermal gas. The proximity, peculiar stellar velocity and high Galactic latitude of IRAS16342-3814 make a single dish observation possible. We use the Arizona Radio Observatory 10m telescope to observe the CO J=2-1 line and compare the line parameters with those of masers. We report the detection of 12CO and 13CO J=2-1 lines from IRAS16342-3814. The inferred 12CO mass loss rate is an order of magnitude lower than the infrared and OH mass loss rates, indicating a very cold and thick O-rich circumstellar envelope around the star. We also find a 12CO expansion velocity of Vexp=46±1km/s that is too high for an AGB wind and confirm the systemic velocity of 44±1km/s. In addition we measure a very low 12CO/13CO line ratio of 1.7. The first detection of CO lines has provided a new way to investigate water fountain stars. Given the high expansion velocity of the CO gas and its relation to maser velocities, we infer that the CO emission region is co-located with the OH mainline masers in the warm base of the optical bipolar lobes, while the high velocity OH1612MHz and H2O masers are located in the side walls and at the farthest ends of the bipolar lobes, respectively. Further observations are highly desirable to understand the very low 12CO/13CO line ratio.

Abstract Copyright:

Journal keyword(s): stars: AGB and post-AGB - stars: circumstellar matter - stars: evolution - stars: individual: IRAS16342-3814 - stars: winds, outflows - radio lines: stars

Simbad objects: 6

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2008A&A...488L..21H and select 'bookmark this link' or equivalent in the popup menu


2021.08.03-07:22:57

© Université de Strasbourg/CNRS

    • Contact