SIMBAD references

2010A&A...522A..98M - Astronomy and Astrophysics, volume 522, A98-98 (2010/11-1)

uvby-β photometry of solar twins. The solar colors, model atmospheres, and the Teff and metallicity scales.


Abstract (from CDS):

Solar colors have been determined on the uvby-β photometric system to test absolute solar fluxes, to examine colors predicted by model atmospheres as a function of stellar parameters (Teff, logg, [Fe/H]), and to probe zero-points of Teff and metallicity scales. New uvby-β photometry is presented for 73 solar-twin candidates. Most stars of our sample have also been observed spectroscopically to obtain accurate stellar parameters. Using the stars that most closely resemble the Sun, and complementing our data with photometry available in the literature, the solar colors on the uvby-β system have been inferred. Our solar colors are compared with synthetic solar colors computed from absolute solar spectra and from the latest Kurucz (ATLAS9) and MARCS model atmospheres. The zero-points of different Teff and metallicity scales are verified and corrections are proposed. Our solar colors are (b-y)=0.4105±0.0015, m1,☉=0.2122±0.0018, c1,☉=0.3319±0.0054, and β=2.5915±0.0024. The (b-y) and m_1, ☉_ colors obtained from absolute spectrophotometry of the Sun agree within 3-σ with the solar colors derived here when the photometric zero-points are determined from either the STIS HST observations of Vega or an ATLAS9 Vega model, but the c_1, ☉_ and β synthetic colors inferred from absolute solar spectra agree with our solar colors only when the zero-points based on the ATLAS9 model are adopted. The Kurucz solar model provides a better fit to our observations than the MARCS model. For photometric values computed from the Kurucz models, (b-y) and m_1, ☉_ are in excellent agreement with our solar colors independently of the adopted zero-points, but for c_1, ☉_ and β agreement is found only when adopting the ATLAS9 zero-points. The c_1, ☉_ color computed from both the Kurucz and MARCS models is the most discrepant, probably revealing problems either with the models or observations in the u band. The Teff calibration of Alonso and collaborators has the poorest performance (∼140K off), while the relation of Casagrande and collaborators is the most accurate (within 10K). We confirm that the Ramirez & Melendez (2005ApJ...626..465R) uvby metallicity calibration, recommended by Arnadottir and collaborators to obtain [Fe/H] in F, G, and K dwarfs, needs a small (∼10%) zero-point correction to place the stars and the Sun on the same metallicity scale. Finally, we confirm that the c1 index in solar analogs has a strong metallicity sensitivity.

Abstract Copyright:

Journal keyword(s): Sun: fundamental parameters - stars: atmospheres - stars: fundamental parameters - stars: solar-type

Simbad objects: 98

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2010A&A...522A..98M and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact