2011ApJ...738...22W


Query : 2011ApJ...738...22W

2011ApJ...738...22W - Astrophys. J., 738, 22 (2011/September-1)

A cosmic coincidence: the power-law galaxy correlation function.

WATSON D.F., BERLIND A.A. and ZENTNER A.R.

Abstract (from CDS):

We model the evolution of galaxy clustering through cosmic time to investigate the nature of the power-law shape of ξ(r), the galaxy two-point correlation function. While ξ(r) at large scales is set by primordial fluctuations, departures from a power law are governed by galaxy pair counts at small scales, subject to nonlinear dynamics. We assume that galaxies reside within dark matter halos and subhalos. Therefore, the shape of the correlation function at small scales depends on the amount of halo substructure. We use a semi-analytic substructure evolution model to study subhalo populations within host halos. We find that tidal mass loss and, to a lesser extent, dynamical friction dramatically deplete the number of subhalos within larger host halos over time, resulting in a ∼90% reduction by z = 0 compared to the number of distinct mergers that occur during the assembly of a host halo. We show that these nonlinear processes resulting in this depletion are essential for achieving a power law ξ(r). We investigate how the shape of ξ(r) depends on subhalo mass (or luminosity) and redshift. We find that ξ(r) breaks from a power law at high masses, implying that only galaxies of luminosities ≲ L* should exhibit power-law clustering. Moreover, we demonstrate that ξ(r) evolves from being far from a power law at high redshift, toward a near power-law shape at z = 0. We argue that ξ(r) will once again evolve away from a power law in the future. This is in large part caused by the evolving competition between the accretion and destruction rates of subhalos over time, which happen to strike just the right balance at z ~ 0. We then investigate the conditions required for ξ(r) to be a power law in a general context. We use the halo model, along with simple parameterizations of the halo occupation distribution, to probe galaxy occupation at various masses and redshifts. We show that the key ingredients determining the shape of ξ(r) are the fraction of galaxies that are satellites, the relative difference in mass between the halos of isolated galaxies and halos that contain a single satellite on average, and the rareness of halos that host galaxies. These pieces are intertwined and we find no simple, universal rule for which a power law ξ(r) will occur. However, we do show that the physics responsible for setting the galaxy content of halos do not care about the conditions needed to achieve a power law ξ(r) and that these conditions are met only in a narrow mass and redshift range. We conclude that the power-law nature of ξ(r) for L* and fainter galaxy samples at low redshift is a cosmic coincidence.

Abstract Copyright:

Journal keyword(s): cosmology: theory - dark matter - galaxies: halos - galaxies: structure - large-scale structure of universe

Simbad objects: 1

goto Full paper

goto View the references in ADS

Number of rows : 1
N Identifier Otype ICRS (2000)
RA
ICRS (2000)
DEC
Proper motions Parallaxes Redshift Rad. vel. cz Mag U Mag B Mag V Mag R Mag I Sp type Morph. type Angular size #ref
1983 - 2024
1 NAME LMC Galaxy 05 23 34.6 -69 45 22 1.910 0.229 0.000875 262.2 262.31     0.4     ~ SB(s)m 322.827 274.770 170 17258

Query : 2011ApJ...738...22W

Basic data :
NAME LMC -- Galaxy
Origin of the objects types :

(Ref) Object type as listed in the reference "Ref"
(acronym) Object type linked to the acronym according to the original reference
() Anterior to 2007, before we can link the objet type to a reference, or given by the CDS team in some particular cases

Other object types:
gam (2EG,3EG,...), G (2008ApJ,ESO,...), HS? (2019A&A), IR (IRAS)
Syntax of coordinates is : "ra dec (wtype) [error ellipse] quality bibcode" :
  • ra dec : right ascension and declination (unit and frame defined according to your Output Options)
    Grey values are increasing the original precision due to the computation of frame transformations
  • (wtype) : wavelength class for the origin of the coordinates (Rad, mm, IR, Optical, UV, Xray, Gam)
  • [error ellipse] : measurement uncertainty, on (ra,dec) if the positional angle is 90 degrees, on (majaxis,minaxis) otherwise (in mas at defined epoch in the original catalogue),
    position angle (in degrees North celestial pole to East)
  • quality : flag of quality
    • E ≥ 10"
    • D : 1-10" (and some old data)
    • C : 0.1-1"
    • B : 0.01-0.1" + 2MASS, Tyc
    • A : VLBI, Hipparcos
  • bibcode : bibcode of the coordinates reference
ICRS coord. (ep=2000) :
05 23 34.6 -69 45 22 (Optical) [ ] D 2003A&A...412...45P
Syntax of coordinates is : "ra dec (wtype) [error ellipse] quality bibcode" :
  • ra dec : right ascension and declination (unit and frame defined according to your Output Options)
    Grey values are increasing the original precision due to the computation of frame transformations
  • (wtype) : wavelength class for the origin of the coordinates (Rad, mm, IR, Optical, UV, Xray, Gam)
  • [error ellipse] : measurement uncertainty, on (ra,dec) if the positional angle is 90 degrees, on (majaxis,minaxis) otherwise (in mas at defined epoch in the original catalogue),
    position angle (in degrees North celestial pole to East)
  • quality : flag of quality
    • E ≥ 10"
    • D : 1-10" (and some old data)
    • C : 0.1-1"
    • B : 0.01-0.1" + 2MASS, Tyc
    • A : VLBI, Hipparcos
  • bibcode : bibcode of the coordinates reference
FK5 coord. (ep=2000 eq=2000) :
05 23 34.6 -69 45 22 [ ]
Syntax of coordinates is : "ra dec (wtype) [error ellipse] quality bibcode" :
  • ra dec : right ascension and declination (unit and frame defined according to your Output Options)
    Grey values are increasing the original precision due to the computation of frame transformations
  • (wtype) : wavelength class for the origin of the coordinates (Rad, mm, IR, Optical, UV, Xray, Gam)
  • [error ellipse] : measurement uncertainty, on (ra,dec) if the positional angle is 90 degrees, on (majaxis,minaxis) otherwise (in mas at defined epoch in the original catalogue),
    position angle (in degrees North celestial pole to East)
  • quality : flag of quality
    • E ≥ 10"
    • D : 1-10" (and some old data)
    • C : 0.1-1"
    • B : 0.01-0.1" + 2MASS, Tyc
    • A : VLBI, Hipparcos
  • bibcode : bibcode of the coordinates reference
280.4652 -32.8884 [ ]
Syntax of proper motions is : "pm-ra pm-dec [error ellipse] quality bibcode"
  • pm-ra : mu-ra*cos(dec) (expressed in the ICRS system in mas/yr)
  • pm-dec : mu-dec (expressed in the ICRS system in mas/yr)
  • [error ellipse] : error major axis and minor axis (in mas), orientation angle (in deg)
  • quality : flag of quality (A=best quality -> E=worst quality, {� } =unknown quality)
  • bibcode : bibcode of the proper motion reference
Proper motions mas/yr :
1.910 0.229 [0.020 0.047 ] C 2013ApJ...764..161K
Syntax of radial velocity (or/and redshift) is : "value [error] (wavelength) quality bibcode"
  • value : radial velocity or/and redshift (Heliocentric frame) according to your Output Options
    (redshift may be not displayed if the data value is <0 and the database inside value is a radial velocity)
  • [error] : error of the corresponding value displayed before
  • (wavelength) : wavelength range of the measurement : Rad, mm, IR, Opt, UV, Xray, Gam or  '∼'(unknown)
  • quality : flag of quality ( A=best quality -> E=worst quality, ∼=unknown quality)
  • bibcode : bibcode of the value's origin
Radial velocity / Redshift / cz :
V(km/s) 262.2 [3.4] / z(spectroscopic) 0.000875 [0.000011] / cz 262.31 [3.40]
   C 2012AJ....144....4M
Syntax of morphological type is : mtype quality bibcode
  • mtype : Hubble morphological class (spirals, ellipticals, etc)
  • quality : flag of quality (A=best quality -> E=worst quality, {� } =unknown quality)
  • bibcode : bibcode of the morphological type reference
Morphological type:
SB(s)m D 2013MNRAS.428.1927C
Syntax of angular size is : "maj-axis min-axis angle (wtype) quality bibcode"
  • maj-axis : major axis size (arc minutes)
  • min-axis : minor axis size (arc minutes)
  • angle : orientation angle (in degrees)
  • (wtype) : wavelength class for the origin of the angular size (Rad, mm, IR, Opt, UV, Xray, Gam)
  • quality : flag of quality of the angular size values ( A=best quality -> E=worst quality, {� } =unknown quality)
  • bibcode : bibcode of the angular size reference
Angular size (arcmin):
322.827 274.770 170 (Opt) D 2014MNRAS.445..881C
Syntax of fluxes (or magnitudes) is : "filter-name (System) flux-value [error] quality MultVarFlags bibcode"
  • filter-name : U, B, V, R, I, G, J, H, K, u, g, r, i, z
  • (System) : may be AB (default is Vega)
  • flux-value : value of flux or magnitude
  • [error] : error value
  • quality : flag of quality of the flux value ( A=best quality -> E=worst quality, {� } =unknown quality)
  • MultVarFlags : Mult is zero or one char (J) for joined photometry ; Var can be zero or two chars (V[0-4])
  • bibcode : bibcode of the flux reference
Fluxes (1) :
V 0.4 [0.1] D 2012AJ....144....4M
SIMBAD within arcmin
Overlay Simbad points in this preview
Back
All CDSPortal (CDSPortal)

Send to sendBySAMP sendBySAMP

sedIcon
within arcsec The VizieR photometry tool allows for easy visualization of photometry points extracted around the Simbad position from photometry-enabled catalogues in VizieR.
The search radius has to be specified by the user. It is currently limited to a maximum of 30 arcsec. It depends mostly on the precision or quality of the coordinates (SIMBAD and VizieR catalogs), the resolution of the images from which the sources were extracted, source extent, and source crowding.
Suggestions are: crowded field: 0.5 to 1.5 arcsec, 3 arcsec otherwise; uncertain coordinates (SIMBAD quality E or coordinates without reference): 5 to 30 arsec (risky!).
sed-help-icon

The link on the acronym of the identifiers give access to the information for this acronym in the dictionary of nomenclature.
Identifiers (21) :
An access of full data is available using the icon Vizier near the identifier of the catalogue

NAME LMC ESO-LV 56-1150 2FHL J0526.6-6825e NAME Nubecula Major
Anon 0524-69 1FGL J0538.9-6914 1FLE J0536-6856 [M98c] 052400.0-694800
2EG J0532-6914 2FGL J0526.6-6825e GLXY G279.0-34.4+262 [MI94] Sm 29
3EG J0533-6916 3FGL J0526.6-6825e IRAS 05240-6948
EGR J0537-6946 4FGL J0519.9-6845e LEDA 17223
ESO 56-115 1FHL J0526.6-6825 NAME Large Magellanic Cloud

References (17258 between 1983 and 2024) (Total 17556)
Simbad bibliographic survey began in 1850 for stars (at least bright stars) and in 1983 for all other objects (outside the solar system).
Follow new references on this object
                Reference summaries :

                from: to:

                 or select by : (not exhaustive, explanation here)


Collections of Measurements


velocities : 1    distance : 8    Fe_H : 1   

   

Observing logs


herschel : 144    ISO : 39    XMM : 2   

   


External archives :

Archive data at HEASARC - High-Energy Astrophysics Science Archive Research Center

Data at NED - NASA/IPAC Extragalactic Database : NAME LMC

Link by name to the catalogue in VizieR :

3EG J0533-6916 ESO-LV 56-1150 IRAS 05240-6948

Search by coordinates in Vizier (radius: 5 arcsec)


Annotations :
Annotations allow a user to add a note or report an error concerning the astronomical object and its data. It requires registration to post a note. See description .
Please, have a look at Best practices. The list of all annotations to SIMBAD objects can be found here .

Currently no annotations available

add an annotation to this object

report an error concerning the data of this object


To bookmark this query, right click on this link: simbad:objects in 2011ApJ...738...22W and select 'bookmark this link' or equivalent in the popup menu