SIMBAD references

2012ApJ...756..181G - Astrophys. J., 756, 181 (2012/September-2)

The Fermi bubbles. I. Possible evidence for recent AGN jet activity in the Galaxy.

GUO F. and MATHEWS W.G.

Abstract (from CDS):

The Fermi Gamma-ray Space Telescope reveals two large gamma-ray bubbles in the Galaxy, which extend about 50° (∼10 kpc) above and below the Galactic center (GC) and are symmetric about the Galactic plane. Using axisymmetric hydrodynamic simulations with a self-consistent treatment of the dynamical cosmic ray (CR)-gas interaction, we show that the bubbles can be created with a recent active galactic nucleus (AGN) jet activity about 1-3 Myr ago, which was active for a duration of ∼0.1-0.5 Myr. The bipolar jets were ejected into the Galactic halo along the rotation axis of the Galaxy. Near the GC, the jets must be moderately light with a typical density contrast 0.001 ≲ η ≲ 0.1 relative to the ambient hot gas. The jets are energetically dominated by kinetic energy, and overpressured with either CR or thermal pressure which induces lateral jet expansion, creating fat CR bubbles as observed. The sharp edges of the bubbles imply that CR diffusion across the bubble surface is strongly suppressed. The jet activity induces a strong shock, which heats and compresses the ambient gas in the Galactic halo, potentially explaining the ROSAT X-ray shell features surrounding the bubbles. The Fermi bubbles provide plausible evidence for a recent powerful AGN jet activity in our Galaxy, providing new insights into the origin of the halo CR population and the channel through which massive black holes in disk galaxies release feedback energy during their growth.

Abstract Copyright:

Journal keyword(s): cosmic rays - galaxies: active - galaxies: jets - Galaxy: nucleus - gamma rays: galaxies

Simbad objects: 7

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2012ApJ...756..181G and select 'bookmark this link' or equivalent in the popup menu