SIMBAD references

2012MNRAS.421.2682L - Mon. Not. R. Astron. Soc., 421, 2682-2691 (2012/April-2)

Instability of superfluid flow in the neutron star core.


Abstract (from CDS):

Pinning of superfluid vortices to magnetic flux tubes in the outer core of a neutron star supports a velocity difference of ∼ 105 cm/s between the neutron superfluid and the proton–electron fluid as the star spins down. Under the Magnus force that arises on the vortex array, vortices undergo vortex creep through thermal activation or quantum tunnelling. We examine the hydrodynamic stability of this situation. Vortex creep introduces two low-frequency modes, one of which is unstable above a critical wavenumber for any non-zero flow velocity of the neutron superfluid with respect to the charged fluid. For typical pinning parameters of the outer core, the superfluid flow is unstable over wavelengths λ ≲ 10 m and over time-scales of ∼ (λ/1 m)1/2 yr down to ∼1 d. The vortex lattice could degenerate into a tangle, and the superfluid flow would become turbulent. We suggest that superfluid turbulence could be responsible for the red timing noise seen in many neutron stars, and find a predicted spectrum that is generally consistent with observations. The origin of the early-time optical emission of Swift GRB 080310

Abstract Copyright: 2012 The Author Monthly Notices of the Royal Astronomical Society2012 RAS

Journal keyword(s): hydrodynamics - turbulence - stars: neutron - pulsars: general - stars: rotation

CDS comments: Caption Table 1 : PSR 1759-29 is a misprint for PSR 1749-28.

Simbad objects: 8

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2012MNRAS.421.2682L and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact