2014A&A...565A..15M


Query : 2014A&A...565A..15M

2014A&A...565A..15M - Astronomy and Astrophysics, volume 565A, 15-15 (2014/5-1)

Correlations between the stellar, planetary, and debris components of exoplanet systems observed by Herschel.

MARSHALL J.P., MORO-MARTIN A., EIROA C., KENNEDY G., MORA A., SIBTHORPE B., LESTRADE J.-F., MALDONADO J., SANZ-FORCADA J., WYATT M.C., MATTHEWS B., HORNER J., MONTESINOS B., BRYDEN G., DEL BURGO C., GREAVES J.S., IVISON R.J., MEEUS G., OLOFSSON G., PILBRATT G.L. and WHITE G.J.

Abstract (from CDS):

Stars form surrounded by gas- and dust-rich protoplanetary discs. Generally, these discs dissipate over a few (3-10)Myr, leaving a faint tenuous debris disc composed of second-generation dust produced by the attrition of larger bodies formed in the protoplanetary disc. Giant planets detected in radial velocity and transit surveys of main-sequence stars also form within the protoplanetary disc, whilst super-Earths now detectable may form once the gas has dissipated. Our own solar system, with its eight planets and two debris belts, is a prime example of an end state of this process. The Herschel DEBRIS, DUNES, and GT programmes observed 37 exoplanet host stars within 25pc at 70, 100, and 160µm with the sensitivity to detect far-infrared excess emission at flux density levels only an order of magnitude greater than that of the solar system's Edgeworth-Kuiper belt. Here we present an analysis of that sample, using it to more accurately determine the (possible) level of dust emission from these exoplanet host stars and thereafter determine the links between the various components of these exoplanetary systems through statistical analysis. We have fitted the flux densities measured from recent Herschel observations with a simple two parameter (Td, LIR/L*) black-body model (or to the 3σ upper limits at 100µm). From this uniform approach we calculated the fractional luminosity, radial extent and dust temperature. We then plotted the calculated dust luminosity or upper limits against the stellar properties, e.g. effective temperature, metallicity, and age, and identified correlations between these parameters. A total of eleven debris discs are identified around the 37 stars in the sample. An incidence of ten cool debris discs around the Sun-like exoplanet host stars (29±9%) is consistent with the detection rate found by DUNES (20.2±2.0%). For the debris disc systems, the dust temperatures range from 20 to 80 K, and fractional luminosities (LIR/L*) between 2.4x10–6 and 4.1x10–4. In the case of non-detections, we calculated typical 3σ upper limits to the dust fractional luminosities of a few x10–6. We recover the previously identified correlation between stellar metallicity and hot-Jupiter planets in our data set. We find a correlation between the increased presence of dust, lower planet masses, and lower stellar metallicities. This confirms the recently identified correlation between cold debris discs and low-mass planets in the context of planet formation by core accretion.

Abstract Copyright:

Journal keyword(s): infrared: stars - infrared: planetary systems - circumstellar matter - planet-disk interactions

Simbad objects: 49

goto Full paper

goto View the references in ADS

Number of rows : 49
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 HD 1237 PM* 00 16 12.6780107483 -79 51 04.244506480 7.692 7.335 6.578     G8V 233 1
2 * 54 Psc PM* 00 39 21.8053928046 +21 15 01.712899720 7.29 6.71 5.88 5.21 4.82 K0.5V 582 1
3 HD 4308 PM* 00 44 39.2672095011 -65 38 58.277728125 7.31 7.193 6.552     G6VFe-0.9 245 1
4 * ups And PM* 01 36 47.8415443907 +41 24 19.651368029 4.70 4.64 4.10 3.64 3.35 F9V 963 1
5 * q01 Eri PM* 01 42 29.3145176952 -53 44 26.991453264   6.05 5.52     F9V 323 1
6 * tau Cet PM* 01 44 04.0831371922 -15 56 14.927607677 4.43 4.22 3.50 2.88 2.41 G8V 1255 1
7 NAME Phoenix Dwarf Galaxy Sy1 01 51 06.3 -44 26 41   13.48 13.2 12.69   ~ 533 2
8 HD 13445 PM* 02 10 25.9181700303 -50 49 25.465181208   6.945 6.117     K1.5V 456 1
9 * iot Hor PM* 02 42 33.4666679022 -50 48 01.055138166   5.97 5.40     F8V 394 1
10 * 94 Cet PM* 03 12 46.4365677072 -01 11 45.955808988   5.631 5.070     F8.5V 450 1
11 * e Eri PM* 03 19 55.6509122226 -43 04 11.215188426 5.20 4.98 4.27 3.65 3.25 G6V 449 1
12 * eps Eri BY* 03 32 55.8444911587 -09 27 29.739493865 5.19 4.61 3.73 3.00 2.54 K2V 1932 1
13 HD 33564 PM* 05 22 33.5306004096 +79 13 52.142643912       4.8   F7V 171 1
14 * pi. Men PM* 05 37 09.8868446714 -80 28 08.834553264   6.25 5.67     G0V 326 1
15 * bet Pic PM* 05 47 17.0876901 -51 03 59.441135 4.13 4.03 3.86 3.74 3.58 A6V 1905 1
16 HD 40307 PM* 05 54 04.2405000288 -60 01 24.493007640 8.814 8.097 7.147 6.597 6.119 K2.5V 263 1
17 HD 69830 PM* 08 18 23.9469682407 -12 37 55.817187530   6.74 5.95     G8:V 526 1
18 * rho01 Cnc EB* 08 52 35.8111044043 +28 19 50.954994470 7.45 6.82   5.4   K0IV-V 1121 1
19 HD 95086 * 10 57 03.0215719872 -68 40 02.449216128   7.60 7.36     A8III 177 1
20 * 47 UMa PM* 10 59 27.9727514012 +40 25 48.920572724   5.66   4.7   G1-VFe-0.5 773 1
21 * 83 Leo B PM* 11 26 46.2783265113 +03 00 22.756723728 9.467 8.554 7.530 6.97 6.508 K3 201 1
22 HD 102365 PM* 11 46 31.0725331317 -40 30 01.285867174 5.65 5.55 4.88 4.35 3.97 G2V 331 1
23 HD 107146 PM* 12 19 06.5018840304 +16 32 53.867731128   7.61   6.7   G2V 276 0
24 * 61 Vir PM* 13 18 24.3139864471 -18 18 40.297748582 5.710 5.440 4.740     G6.5V 674 1
25 * 70 Vir PM* 13 28 25.8085908881 +13 46 43.638308807 5.930 5.680 4.970 4.37 3.98 G4Va 715 1
26 * tau Boo Ro* 13 47 15.7381720026 +17 27 24.809555600 5.02 4.98 4.49 4.09 3.85 F7IV-V 988 1
27 * alf Cen B PM* 14 39 35.06311 -60 50 15.0992 2.89 2.21 1.33     K1V 1024 2
28 BD-07 4003 BY* 15 19 26.8269387505 -07 43 20.189497466 13.403 11.76 10.560 9.461 8.911 M3V 641 2
29 * nu.02 Lup PM* 15 21 48.1499105161 -48 19 03.469906910 6.35 6.30 5.65     G3/5V 294 1
30 * rho CrB PM* 16 01 02.6604891411 +33 18 12.639472357   6.01   5.0   G0+VaFe-1 634 1
31 * 14 Her PM* 16 10 24.3156759007 +43 49 03.507406809   7.57   6.1   K0V 453 1
32 HD 147513 PM* 16 24 01.2911377368 -39 11 34.729913940 6.17 6.02 5.376     G5V 350 1
33 HD 154345 PM* 17 02 36.4038090379 +47 04 54.764174452   7.50   6.3   G9 270 1
34 * mu. Ara PM* 17 44 08.7031414872 -51 50 02.591603160   5.85 5.15     G3IV-V 531 2
35 * alf Lyr dS* 18 36 56.33635 +38 47 01.2802 0.03 0.03 0.03 0.07 0.10 A0Va 2687 1
36 HD 176051 SB* 18 57 01.60985 +32 54 04.5723 5.85 5.82   4.9   F9V+K1V 262 1
37 * 16 Cyg B PM* 19 41 51.9726777456 +50 31 03.089030916 7.07 6.86 6.20 5.76 5.42 G3V 890 1
38 HD 190360 PM* 20 03 37.4050868074 +29 53 48.492435887   6.44   5.2   G7IV-V 444 1
39 HD 189567 PM* 20 05 32.7654888837 -67 19 15.226124354 6.79 6.71 6.07     G2V 227 1
40 HD 192310 PM* 20 15 17.3913760474 -27 01 58.711625384   6.63 5.723 5.98 8.74 K2+V 318 1
41 HD 204961 PM* 21 33 33.9751191976 -49 00 32.399427028 11.359 10.176 8.672 7.665 6.479 M2/3V 290 1
42 V* HN Peg BY* 21 44 31.3299461136 +14 46 18.983292600       6.16   G0V+ 515 0
43 HD 207129 PM* 21 48 15.7511634187 -47 18 13.017893348   6.18 5.58     G2V 328 0
44 HD 210277 PM* 22 09 29.8657847411 -07 32 55.162082226   8.85 8.57 7.36   G8V 341 1
45 BD-15 6290 BY* 22 53 16.7325836486 -14 15 49.304052185 12.928 11.749 10.192 9.013 7.462 M3.5V 1013 1
46 * 51 Peg PM* 22 57 27.9804852576 +20 46 07.797040104 6.39 6.16 5.46 4.97 4.61 G2IV 1159 1
47 * alf PsA PM* 22 57 39.04625 -29 37 20.0533 1.31 1.25 1.16 1.11 1.09 A4V 1236 3
48 HD 217107 ** 22 58 15.5408995872 -02 23 43.383234768   6.919 6.163     G8IV/V 368 1
49 HD 218396 El* 23 07 28.7157209544 +21 08 03.310767492   6.21 5.953     F0+VkA5mA5 1139 0

To bookmark this query, right click on this link: simbad:objects in 2014A&A...565A..15M and select 'bookmark this link' or equivalent in the popup menu