SIMBAD references

2014MNRAS.439.1390R - Mon. Not. R. Astron. Soc., 439, 1390-1402 (2014/April-1)

The accretion-ejection coupling in the black hole candidate X-ray binary MAXI J1836-194.

RUSSELL T.D., SORIA R., MILLER-JONES J.C.A., CURRAN P.A., MARKOFF S., RUSSELL D.M. and SIVAKOFF G.R.

Abstract (from CDS):

We present the results of our quasi-simultaneous radio, submm, infrared, optical and X-ray study of the Galactic black hole candidate X-ray binary MAXI J1836-194 during its 2011 outburst. We consider the full multiwavelength spectral evolution of the outburst, investigating whether the evolution of the jet spectral break (the transition between optically thick and optically thin synchrotron emission) is caused by any specific properties of the accretion flow. Our observations show that the break does not scale with the X-ray luminosity or with the inner radius of the accretion disc, and is instead likely to be set by much more complex processes. We find that the radius of the acceleration zone at the base of the jet decreases from ∼ 106 gravitational radii during the hard intermediate state to ∼ 103 gravitational radii as the outburst fades (assuming a black hole mass of 8M), demonstrating that the electrons are accelerated on much larger scales than the radius of the inner accretion disc and that the jet properties change significantly during outburst. From our broad-band modelling and high-resolution optical spectra, we argue that early in the outburst, the high-energy synchrotron cooling break was located in the optical band, between ~3.2x1014 and 4.5x1014 Hz. We calculate that the jet has a total radiative power of ~3.1x1036 erg/s, which is ∼ 6 per cent of the bolometric radiative luminosity at this time. We discuss how this cooling break may evolve during the outburst, and how that evolution dictates the total jet radiative power. Assuming the source is a stellar mass black hole with canonical state transitions, from the measured flux and peak temperature of the disc component we constrain the source distance to be 4-10 kpc.

Abstract Copyright: © 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society (2014)

Journal keyword(s): accretion, accretion discs - black hole physics - stars: individual: MAXI J1836-194 - ISM: jets and outflows - X-rays: binaries

Simbad objects: 11

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2014MNRAS.439.1390R and select 'bookmark this link' or equivalent in the popup menu