SIMBAD references

2014MNRAS.443.3586S - Mon. Not. R. Astron. Soc., 443, 3586-3593 (2014/October-1)

Anisotropic neutrino effect on magnetar spin: constraint on inner toroidal field.


Abstract (from CDS):

The ultrastrong magnetic field of magnetars modifies the neutrino cross-section due to the parity violation of the weak interaction and can induce asymmetric propagation of neutrinos. Such an anisotropic neutrino radiation transfers not only the linear momentum of a neutron star but also the angular momentum, if a strong toroidal field is embedded inside the stellar interior. As such, the hidden toroidal field implied by recent observations potentially affects the rotational spin evolution of new-born magnetars. We analytically solve the transport equation for neutrinos and evaluate the degree of anisotropy that causes the magnetar to spin-up or spin-down during the early neutrino cooling phase. Supposing that after the neutrino cooling phase the dominant process causing the magnetar spin-down is the canonical magnetic dipole radiation, we compare the solution with the observed present rotational periods of anomalous X-ray pulsars 1E 1841-045 and 1E 2259+586, whose poloidal (dipole) fields are ∼ 1015 and 1014 G, respectively. Combining with the supernova remnant age associated with these magnetars, the present evaluation implies a rough constraint of global (average) toroidal field strength at Bφ ≲ 1015 G.

Abstract Copyright: © 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society (2014)

Journal keyword(s): magnetic fields - neutrinos - radiative transfer - stars: magnetars - pulsars: general

Simbad objects: 21

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2014MNRAS.443.3586S and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact