SIMBAD references

2015ApJ...811...71Q - Astrophys. J., 811, 71 (2015/September-3)

A new method for constraining molecular cloud thickness: a study of Taurus, Perseus, and Ophiuchus.

QIAN L., LI D., OFFNER S. and PAN Z.

Abstract (from CDS):

The core velocity dispersion (CVD) is a potentially useful tool for studying the turbulent velocity field of molecular clouds. CVD is based on centroid velocities of dense gas clumps, thus is less prone to density fluctuation and reflects more directly the cloud velocity field. Prior work demonstrated that the Taurus molecular cloud CVD resembles the well-known Larson's linewidth-size relation of molecular clouds. In this work, we studied the dependence of the CVD on the line-of-sight thickness of molecular clouds, a quantity which cannot be measured by direct means. We produced a simple statistical model of cores within clouds and analyzed the CVD of a variety of hydrodynamical simulations. We show that the relation between the CVD and the 2D projected separation of cores () is sensitive to the cloud thickness. When the cloud is thin, the index of the relation (γ in the relation) reflects the underlying energy spectrum () in that. The relation becomes flatter () for thicker clouds. We used this result to constrain the thicknesses of Taurus, Perseus, and Ophiuchus. We conclude that Taurus has a ratio of cloud depth to cloud length smaller than about 1/10-1/8, i.e., it is a sheet. A simple geometric model fit to the linewidth-size relation indicates that the Taurus cloud has a ∼0.7 pc line-of-sight dimension. In contrast, Perseus and Ophiuchus are thicker and have ratios of cloud depth to cloud length larger than about 1/10-1/8.

Abstract Copyright:

Journal keyword(s): ISM: clouds - ISM: molecules - turbulence

Simbad objects: 5

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2015ApJ...811...71Q and select 'bookmark this link' or equivalent in the popup menu