SIMBAD references

2015MNRAS.446.1478B - Mon. Not. R. Astron. Soc., 446, 1478-1492 (2015/January-2)

Keplerian periodogram for Doppler exoplanet detection: optimized computation and analytic significance thresholds.


Abstract (from CDS):

We consider the so-called Keplerian periodogram, in which the putative detectable signal is modelled by a highly non-linear Keplerian radial velocity function, appearing in Doppler exoplanetary surveys. We demonstrate that for planets on high-eccentricity orbits the Keplerian periodogram is far more efficient than the classic Lomb-Scargle periodogram and even the multiharmonic periodograms, in which the periodic signal is approximated by a truncated Fourier series. We provide a new numerical algorithm for computation of the Keplerian periodogram. This algorithm adaptively increases the parametric resolution where necessary, in order to uniformly cover all local optima of the Keplerian fit. Thanks to this improvement, the algorithm provides more smooth and reliable results with minimized computing demands. We also derive a fast analytic approximation to the false alarm probability levels of the Keplerian periodogram. This approximation has the form (Pz3/2 + Qz)Wexp( - z), where z is the observed periodogram maximum, W is proportional to the settled frequency range, and the coefficients P and Q depend on the maximum eccentricity to scan.

Abstract Copyright: © 2014 The Author Published by Oxford University Press on behalf of the Royal Astronomical Society (2014)

Journal keyword(s): methods: data analysis - methods: statistical - techniques: radial velocities - surveys - stars: individual: HD 80606

Simbad objects: 5

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2015MNRAS.446.1478B and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact