SIMBAD references

2015MNRAS.453.2277H - Mon. Not. R. Astron. Soc., 453, 2277-2289 (2015/November-1)

On the relative importance of different microphysics on the D-type expansion of galactic HII regions.

HAWORTH T.J., HARRIES T.J., ACREMAN D.M. and BISBAS T.G.

Abstract (from CDS):

Radiation hydrodynamics (RHD) simulations are used to study many astrophysical phenomena; however, they require the use of simplified radiation transport and thermal prescriptions to reduce computational cost. In this paper, we present a systematic study of the importance of microphysical processes in RHD simulations using the example of D-type HII region expansion. We compare the simplest hydrogen-only models with those that include: ionization of H, He, C, N, O, S and Ne, different gas metallicity, non-LTE metal-line-blanketed stellar spectral models of varying metallicity, radiation pressure, dust and treatment of photodissociation regions. Each of these processes is explicitly treated using modern numerical methods rather than parametrization. In line with expectations, changes due to microphysics in either the effective number of ionizing photons or the thermal structure of the gas lead to differences in D-type expansion. In general, we find that more realistic calculations lead to the onset of D-type expansion at smaller radii and a slower subsequent expansion. Simulations of star-forming regions using simplified microphysics are therefore likely overestimating the strength of radiative feedback. We find that both variations in gas metallicity and the inclusion of dust can affect the ionization front evolution at the 10–20 percent level over 500 kyr, which could substantially modify the results of simplified 3D models including feedback. Stellar metallicity, radiation pressure and the inclusion of photodissociation regions are all less-significant effects at the 1 percent level or less, rendering them of minor importance in the modelling the dynamical evolution of HII regions.

Abstract Copyright: © 2015 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society (2015)

Journal keyword(s): methods: numerical - stars: formation - ISM: bubbles - ISM: clouds - HII regions - ISM: kinematics and dynamics

Simbad objects: 3

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2015MNRAS.453.2277H and select 'bookmark this link' or equivalent in the popup menu