SIMBAD references

2016A&A...594A.114C - Astronomy and Astrophysics, volume 594A, 114-114 (2016/10-1)

Radio continuum and X-ray emission from the most extreme far-IR-excess galaxy NGC 1377. An extremely obscured AGN revealed.

COSTAGLIOLA F., HERRERO-ILLANA R., LOHFINK A., PEREZ-TORRES M., AALTO S., MULLER S. and ALBERDI A.

Abstract (from CDS):

Context. Galaxies which strongly deviate from the radio-far infrared (FIR) correlation are of great importance for studies of galaxy evolution as they may be tracing early, short-lived stages of starbursts and active galactic nuclei (AGNs). The most extreme FIR-excess galaxy NGC 1377 has long been interpreted as a young dusty starburst, but millimeter observations of CO lines revealed a powerful collimated molecular outflow which cannot be explained by star formation alone.
Aims. This paper aims to determine the nature of the energy source in the nucleus of NGC 1377 and to study the driving mechanism of the collimated CO outflow.
Methods. We present new radio observations of NGC 1377 at 1.5 and 10GHz obtained with the Jansky Very Large Array (JVLA) and Chandra X-ray observations. The observations are compared to synthetic starburst models to constrain the properties of the central energy source.
Results. We obtained the first detection of the cm radio continuum and X-ray emission in NGC 1377. We found that the radio emission is distributed in two components, one on the nucleus and another offset by 4.5" to the south-west. We confirm the extreme FIR-excess of the galaxy, with a qFIR ~=4.2, which deviates by more than 7σ from the radio-FIR correlation. Soft X-ray emission is detected on the off-nucleus component. From the radio emission we estimated for a young (<10Myr) starburst a star formation rate (SFR) of <0.1M/yr. Such a SFR is not sufficient to power the observed IR luminosity and to drive the CO outflow.
Conclusions. We found that a young starburst cannot reproduce all the observed properties of the nucleus of NGC 1377. We suggest that the galaxy may be harboring a radio-quiet, obscured AGN of 106M, accreting at near-Eddington rates. We speculate that the off-nucleus component may be tracing an hot-spot in the AGN jet.

Abstract Copyright: © ESO, 2016

Journal keyword(s): radio continuum: galaxies - X-rays: galaxies - galaxies: active - galaxies: starburst - galaxies: jets - galaxies: individual: NGC 1377

Simbad objects: 8

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2016A&A...594A.114C and select 'bookmark this link' or equivalent in the popup menu


2021.08.02-12:41:12

© Université de Strasbourg/CNRS

    • Contact