SIMBAD references

2016ApJ...833..137Z - Astrophys. J., 833, 137-137 (2016/December-3)

NLTE analysis of high-resolution H-band spectra. I. Neutral silicon.

ZHANG J., SHI J., PAN K., ALLENDE PRIETO C. and LIU C.

Abstract (from CDS):

We investigated the reliability of our silicon atomic model and the influence of non-local thermodynamical equilibrium (NLTE) on the formation of neutral silicon (Si i) lines in the near-infrared (near-IR) H-band. We derived the differential Si abundances for 13 sample stars with high-resolution H-band spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE), as well as from optical spectra, both under local thermodynamical equilibrium (LTE) and NLTE conditions. We found that the differences between the Si abundances derived from the H-band and from optical lines for the same stars are less than 0.1 dex when the NLTE effects are included, and that NLTE reduces the line-to-line scatter in the H-band spectra for most sample stars. These results suggest that our Si atomic model is appropriate for studying the formation of H-band Si lines. Our calculations show that the NLTE corrections of the Si i H-band lines are negative, i.e., the final Si abundances will be overestimated in LTE. The corrections for strong lines depend on surface gravity, and tend to be larger for giants, reaching ∼-0.2 dex in our sample, and up to ∼-0.4 dex in extreme cases of APOGEE targets. Thus, the NLTE effects should be included in deriving silicon abundances from H-band Si i lines, especially for the cases where only strong lines are available.

Abstract Copyright: © 2016. The American Astronomical Society. All rights reserved.

Journal keyword(s): line: formation - line: profiles - stars: abundances - stars: atmospheres - stars: atmospheres

Simbad objects: 13

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2016ApJ...833..137Z and select 'bookmark this link' or equivalent in the popup menu