SIMBAD references

2017A&A...603A...5E - Astronomy and Astrophysics, volume 603A, 5-5 (2017/7-1)

BOSS Great Wall: morphology, luminosity, and mass.

EINASTO M., LIETZEN H., GRAMANN M., SAAR E., TEMPEL E., LIIVAMAGI L.J., MONTERO-DORTA A.D., STREBLYANSKA A., MARASTON C. and RUBINO-MARTIN J.A.

Abstract (from CDS):

Context. Galaxy superclusters are the largest systems in the Universe that can give us information about the formation and evolution of the cosmic web.
Aims. We study the morphology of the superclusters from the BOSS Great Wall (BGW), a recently discovered very rich supercluster complex at the redshift z=0.47.
Methods. We have employed the Minkowski functionals to quantify supercluster morphology. We calculate supercluster luminosities and masses using two methods. Firstly, we used data about the luminosities and stellar masses of high stellar mass galaxies with log (M*/h–1M)≥11.3. Secondly, we applied a scaling relation that combines morphological and physical parameters of superclusters to obtain supercluster luminosities, and obtained supercluster masses using the mass-to-light ratios found for local rich superclusters.
Results. The BGW superclusters are very elongated systems, with shape parameter values of less than 0.2. This value is lower than that found for the most elongated local superclusters. The values of the fourth Minkowski functional V3 for the richer BGW superclusters (V3=7 and 10) show that they have a complicated and rich inner structure. We identify two Planck SZ clusters in the BGW superclusters, one in the richest BGW supercluster, and another in one of the poor BGW superclusters. The luminosities of the BGW superclusters are in the range of 1-8x1013h–2L, and masses in the range of 0.4-2.1x1016h–1M. Supercluster luminosities and masses obtained with two methods agree well.
Conclusions. The BGW is a complex of massive, luminous and large superclusters with very elongated shape. The search and detailed study, including the morphology analysis of the richest superclusters and their complexes from observations and simulations can help us to understand formation and evolution of the cosmic web.

Abstract Copyright: © ESO, 2017

Journal keyword(s): large-scale structure of Universe - galaxies: clusters: general - galaxies: clusters: general

Simbad objects: 11

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2017A&A...603A...5E and select 'bookmark this link' or equivalent in the popup menu


2021.05.07-19:37:18

© Université de Strasbourg/CNRS

    • Contact