SIMBAD references

2017ApJ...835L...8N - Astrophys. J., 835, L8-L8 (2017/January-3)

An ultraviolet excess in the superluminous supernova Gaia16apd reveals a powerful central engine.

NICHOLL M., BERGER E., MARGUTTI R., BLANCHARD P.K., MILISAVLJEVIC D., CHALLIS P., METZGER B.D. and CHORNOCK R.

Abstract (from CDS):

Since the discovery of superluminous supernovae (SLSNe) in the last decade, it has been known that these events exhibit bluer spectral energy distributions than other supernova subtypes, with significant output in the ultraviolet. However, the event Gaia16apd seems to outshine even the other SLSNe at rest-frame wavelengths below ∼3000 A. Yan et al. have recently presented HST UV spectra and attributed the UV flux to low iron-group abundance in the outer ejecta, and hence reduced line blanketing. Here, we present UV and optical light curves over a longer baseline in time, revealing a rapid decline at UV wavelengths despite a typical optical evolution. Combining the published UV spectra with our own optical data, we demonstrate that Gaia16apd has a much hotter continuum than virtually any SLSN at maximum light, but it cools rapidly thereafter and is indistinguishable from the others by ∼10-15 days after peak. Comparing the equivalent widths of UV absorption lines with those of other events, we show that the excess UV continuum is a result of a more powerful central power source, rather than a lack of UV absorption relative to other SLSNe or an additional component from interaction with the surrounding medium. These findings strongly support the central-engine hypothesis for hydrogen-poor SLSNe. An explosion ejecting Mej = 4.8(0.2/κ) M, where κ is the opacity in cm2 g–1, and forming a magnetar with spin period P = 2 ms, and B = 2 x 1014 G (lower than other SLSNe with comparable rise times) can consistently explain the light curve evolution and high temperature at peak. The host metallicity, Z = 0.18 Z, is comparable to other SLSNe.

Abstract Copyright: © 2017. The American Astronomical Society. All rights reserved.

Journal keyword(s): supernovae: general - supernovae: individual: Gaia16apd - supernovae: individual: Gaia16apd

Simbad objects: 13

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2017ApJ...835L...8N and select 'bookmark this link' or equivalent in the popup menu