SIMBAD references

2017ApJ...845...20G - Astrophys. J., 845, 20-20 (2017/August-2)

Local stability and global instability in iron-opaque disks.

GRZEDZIELSKI M., JANIUK A. and CZERNY B.

Abstract (from CDS):

The thermal stability of accretion disks and the possibility of seeing a limit-cycle behavior strongly depends on the ability of the disk plasma to cool down. Various processes connected with radiation-matter interaction appearing in hot accretion disk plasma contribute to opacity. For the case of geometrically thin and optically thick accretion disks, we can estimate the influence of several different components of function κ, given by the Roseland mean. In the case of high temperatures of ∼107 K, the electron Thomson scattering is dominant. At lower temperatures, atomic processes become important. The slope dlogκ/dlogT can have a locally stabilizing or destabilizing effect on the disk. Although the local MHD simulation postulates the stabilizing influence of the atomic processes, only the global time-dependent model can reveal the global disk stability range estimation. This is due to the global diffusive nature of those processes. In this paper, using the previously tested GLADIS code with a modified prescription of the viscous dissipation, we examine the stabilizing effect of the iron opacity bump.

Abstract Copyright: © 2017. The American Astronomical Society. All rights reserved.

Journal keyword(s): accretion, accretion disks - atomic data - atomic processes - black hole physics - instabilities - radiation: dynamics - radiation: dynamics

Simbad objects: 3

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2017ApJ...845...20G and select 'bookmark this link' or equivalent in the popup menu