SIMBAD references

2017ApJ...851...14J - Astrophys. J., 851, 14-14 (2017/December-2)

IN-SYNC. VII. Evidence for a decreasing spectroscopic binary fraction (from 1 to 100 myr) within the IN-SYNC sample.


Abstract (from CDS):

We study the occurrence of spectroscopic binaries in young star-forming regions using the INfrared Spectroscopy of Young Nebulous Clusters (IN-SYNC) survey, carried out in SDSS-III with the APOGEE spectrograph. Multi-epoch observations of thousands of low-mass stars in Orion A, NGC 2264, NGC 1333, IC 348, and the Pleiades have been carried out, yielding H-band spectra with a nominal resolution of R = 22,500 for sources with H < 12 mag. Radial velocity precisions of ∼0.3 km s–1 were achieved, which we use to identify radial velocity variations indicative of undetected companions. We use Monte Carlo simulations to assess the types of spectroscopic binaries to which we are sensitive, finding sensitivity to binaries with orbital periods 103.5 days, for stars with 2500 K Teff 6000 K and v sin i < 100 km s–1. Using Bayesian inference, we find evidence for a decline in the spectroscopic binary fraction, by a factor of 3-4, from the age of our pre-main-sequence (PMS) sample to the Pleiades age . The significance of this decline is weakened if spot-induced radial-velocity jitter is strong in the sample, and is only marginally significant when comparing any one of the PMS clusters against the Pleiades. However, the same decline in both sense and magnitude is found for each of the five PMS clusters, and the decline reaches a statistical significance of greater than 95% confidence when considering the PMS clusters jointly. Our results suggest that dynamical processes disrupt the widest spectroscopic binaries (Porb~103–104 days) as clusters age, indicating that this occurs early in the stars' evolution, while they still reside within their nascent clusters.

Abstract Copyright: © 2017. The American Astronomical Society. All rights reserved.

Journal keyword(s): binaries: spectroscopic - stars: low-mass - stars: pre-main sequence - stars: pre-main sequence

Simbad objects: 83

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2017ApJ...851...14J and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact