SIMBAD references

2017MNRAS.470.4222M - Mon. Not. R. Astron. Soc., 470, 4222-4230 (2017/October-1)

Laboratory study of methyl isocyanate ices under astrophysical conditions.

MATE B., MOLPECERES G., TIMON V., TANARRO I., ESCRIBANO R., GUILLEMIN J.C., CERNICHARO J. and HERRERO V.J.

Abstract (from CDS):

Methyl isocyanate has been recently detected in comet 67P/Churyumov-Gerasimenko (67P/CG) and in the interstellar medium. New physicochemical studies on this species are now necessary as tools for subsequent studies in astrophysics. In this work, infrared spectra of solid CH3NCO have been obtained at temperatures of relevance for astronomical environments. The spectra are dominated by a strong, characteristic multiplet feature at 2350-2250 cm–1, which can be attributed to the asymmetric stretching of the NCO group. A phase transition from amorphous to crystalline methyl isocyanate is observed at ∼90 K. The band strengths for the absorptions of CH3NCO in ice at 20 K have been measured. Deuterated methyl isocyanate is used to help with the spectral assignment. No X-ray structure has been reported for crystalline CH3NCO. Here we advance a tentative theoretical structure, based on density functional theory (DFT) calculations, derived taking the crystal of isocyanic acid as a starting point. A harmonic theoretical spectrum is then calculated for the proposed structure and compared with the experimental data. A mixed ice of H2O and CH3NCO was formed by simultaneous deposition of water and methyl isocyanate at 20 K. The absence of new spectral features indicates that methyl isocyanate and water do not react appreciably at 20 K, but form a stable mixture. The high CH3NCO/H2O ratio reported for comet 67P/CG, and the characteristic structure of the 2350-2250 cm–1 band, makes it a very good candidate for future astronomical searches.

Abstract Copyright: © 2017 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society

Journal keyword(s): methods: laboratory: solid state - techniques: spectroscopic - ISM: clouds - infrared: ISM - infrared: ISM

Simbad objects: 2

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2017MNRAS.470.4222M and select 'bookmark this link' or equivalent in the popup menu