2018A&A...613A..12M


Query : 2018A&A...613A..12M

2018A&A...613A..12M - Astronomy and Astrophysics, volume 613A, 12-12 (2018/5-1)

Spectroscopic and physical parameters of Galactic O-type stars. III. Mass discrepancy and rotational mixing.

MARKOVA N., PULS J. and LANGER N.

Abstract (from CDS):

Context. Massive stars play a key role in the evolution of galaxies and our Universe. Aims. Our goal is to compare observed and predicted properties of single Galactic O stars to identify and constrain uncertain physical parameters and processes in stellar evolution and atmosphere models. Methods. We used a sample of 53 objects of all luminosity classes and with spectral types from O3 to O9.7. For 30 of these, we determined the main photospheric and wind parameters, including projected rotational rates accounting for macroturbulence, and He and N surface abundances, using optical spectroscopy and applying the model atmosphere code FASTWIND. For the remaining objects, similar data from the literature, based on analyses by means of the CMFGEN code, were used instead. The properties of our sample were then compared to published predictions based on two grids of single massive star evolution models that include rotationally induced mixing. Results. Any of the considered model grids face problem in simultaneously reproducing the stellar masses, equatorial gravities, surface abundances, and rotation rates of our sample stars. The spectroscopic masses derived for objects below ∼30M tend to be smaller than the evolutionary ones, no matter which of the two grids have been used as a reference. While this result may indicate the need to improve the model atmosphere calculations (e.g. regarding the treatment of turbulent pressure), our analysis shows that the established mass problem cannot be fully explained in terms of inaccurate parameters obtained by quantitative spectroscopy or inadequate model values of Vrot on the zero age main sequence. Within each luminosity class, we find a close correlation of N surface abundance and luminosity, and a stronger N enrichment in more massive and evolved O stars. Additionally, we also find a correlation of the surface nitrogen and helium abundances. The large number of nitrogen-enriched stars above ∼30M argues for rotationally induced mixing as the most likely explanation. However, none of the considered models can match the observed trends correctly, especially in the high mass regime. Conclusions. We confirm mass discrepancy for objects in the low mass O-star regime. We conclude that the rotationally induced mixing of helium to the stellar surface is too strong in some of the models. We also suggest that present inadequacies of the models to represent the N enrichment in more massive stars with relatively slow rotation might be related (among other issues) to problematic efficiencies of rotational mixing. We are left with a picture in which invoking binarity and magnetic fields is required to achieve a more complete agreement of the observed surface properties of a population of massive main-sequence stars with corresponding evolutionary models.

Abstract Copyright: © ESO 2018

Journal keyword(s): stars: early-type - stars: fundamental parameters - stars: evolution - stars: massive - stars: mass-loss

Simbad objects: 53

goto Full paper

goto View the references in ADS

Number of rows : 53
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 HD 108 SB* 00 06 03.3890541936 +63 40 46.771220928 6.79 7.58 7.40     O4-8f?p 325 0
2 HD 15570 Em* 02 32 49.4207394600 +61 22 42.089384892 8.40 8.80 8.11 7.41 6.86 O4If 305 0
3 NAME Rosette OB Association As* 06 31.7 +04 58           ~ 144 0
4 HD 46223 Y*O 06 32 09.3068103600 +04 49 24.705695568 6.73 7.50 7.28 6.95 6.79 O4V((f)) 381 0
5 HD 46202 bC* 06 32 10.4706981304 +04 57 59.764912343 7.60 8.332 8.269 7.98 7.86 O9.2V 285 0
6 NGC 2244 OpC 06 32 10.8 +04 54 50           ~ 634 1
7 HD 46573 SB* 06 34 23.5692982800 +02 32 02.944339980 7.61 8.27 7.93     O7V((f))z 129 0
8 HD 48279 * 06 42 40.5471009337 +01 42 58.252284586 7.26 8.02 7.96 8.72   O8.5VzNstrvar? 158 0
9 HD 63005 * 07 45 49.0332176232 -26 29 31.436407572 8.29 9.12 9.13 9.64   O5/6 83 0
10 NGC 2467 OpC 07 52 18 -26 25.7           ~ 186 1
11 Ass Pup OB 1 As* 07 53 -26.8           ~ 25 0
12 HD 64568 * 07 53 38.2051918848 -26 14 02.598056556 8.64 9.50 9.39 9.77 9.204 O3V((f*))z 109 0
13 HD 69106 * 08 14 03.7995306624 -36 57 07.938057852 6.12 7.020 7.128 8.02   O9.7IIn 121 0
14 HD 69464 Em* 08 15 48.5652200520 -35 37 52.863334428 8.47 9.11 8.80 9.42   O7Ib(f) 100 0
15 HD 75211 SB* 08 47 01.5921294816 -44 04 28.848481212 7.35 7.90 7.50 8.28   O8.5II((f)) 91 0
16 HD 75222 s*b 08 47 25.1378783304 -36 45 02.670440616 7.24 7.80 7.42 8.22   O9.7Iab 92 0
17 Ass Vel OB 1 As* 08 49.9 -45 00           ~ 100 0
18 CD-44 4865 * 08 50 02.2858329192 -44 34 39.926878500 9.88 10.16 9.63 9.67   B0III 52 0
19 CD-43 4690 * 08 50 52.0461382848 -43 50 22.900242948 10.05 10.48 9.79 9.68   O7.5 29 0
20 HD 76968 V* 08 57 28.8524478672 -50 44 58.197488784 6.53 7.33 7.21 7.01 6.87 O9.2Ib 88 1
21 CD-47 4551 s*b 08 57 54.6180604176 -47 44 15.708893424 9.11 9.41 8.54 8.92   O5Ifc 74 0
22 HD 78344 * 09 05 51.3294079248 -47 46 06.834233424 10.10 10.12 9.00 8.55 8.16 O9.5/B0(Ib) 81 0
23 HD 302505 * 10 05 20.5426689984 -58 44 20.696151660 9.41 9.95 9.89 9.79   B2 33 0
24 HD 91572 * 10 33 12.2657051544 -58 10 13.653979140 7.44 8.29 8.24 9.03   O6.5V((f))z 89 0
25 HD 91824 SB* 10 34 46.6322493936 -58 09 22.038466896 7.17 8.11 8.14 9.02   O7V((f))z 154 0
26 Ass Car OB 1 As* 10 38 -59.0           ~ 162 0
27 HD 92504 * 10 39 36.8683124520 -57 27 40.634282304 7.47 8.38 8.46 9.296   O8.5V(n) 70 0
28 Cl Trumpler 14 OpC 10 43 56.6 -59 33 11   5.70 5.5     ~ 509 0
29 CD-58 3529 * 10 43 59.9072622960 -59 32 25.452459240 8.631 9.439 9.286 9.73 9.11 O7V((f))z 25 0
30 Cl Collinder 228 OpC 10 44 00 -60 05.2           ~ 207 0
31 HD 93204 EB* 10 44 32.3390794992 -59 44 31.020804780 7.63 8.52 8.42 8.20 7.92 O5.5V((f)) 191 0
32 HD 93222 Y*O 10 44 36.2481200208 -60 05 28.890759120 7.26 8.18 8.10 8.91   O7V((f))z 198 0
33 CD-59 3300 * 10 44 41.7962304024 -59 46 56.405228916 8.07 8.79 8.57 9.33   O6V((f)) 141 0
34 Cl Trumpler 16 OpC 10 45 00.7 -59 42 00           ~ 484 0
35 HD 93843 Er* 10 48 37.7715351864 -60 13 25.518487656 6.37 7.29 7.33 8.23   O5III(fc) 172 0
36 CPD-47 4551 * 10 51 53.3358513120 -48 31 05.056573116   12.50 12.33     ~ 2 0
37 HD 94370B * 10 52 22.9890186072 -58 44 50.442928296           ~ 1 0
38 HD 94370A * 10 52 23.2699459656 -58 44 47.633227764   8.149 8.109     O7(n)fp 7 0
39 HD 94370 ** 10 52 23.277192 -58 44 47.56704 7.19 8.69 8.92 8.84   O7.5III(f) 42 0
40 HD 94963 Em* 10 56 35.7867321168 -61 42 32.287821516 6.35 7.17 7.26 8.10   O7II(f) 82 0
41 Ass Car OB 2 As* 11 08 -60.2           ~ 82 0
42 HD 97848 * 11 14 31.9027108872 -59 01 28.842530124 7.66 8.59 8.60 9.43   O8V 81 0
43 HD 148546 Pu* 16 30 23.3122183296 -37 58 21.169697268 7.28 7.99 7.71 8.58   O9Iab 83 0
44 HD 148937 SB* 16 33 52.3869185520 -48 06 40.476418740 6.49 7.12 6.71 7.61   O6f?p 391 1
45 HD 151804 s*b 16 51 33.7218052272 -41 13 49.919519496 4.45 5.29 5.22     O8Iaf 376 0
46 HD 152003 s*b 16 52 47.3744351712 -41 47 08.990966004 6.90 7.47 7.08 6.72 6.35 O9.7IabNwk 120 1
47 NAME Sco OB 1 As* 16 53.5 -41 57           ~ 217 0
48 NGC 6231 OpC 16 54 10.8 -41 48 43           ~ 538 0
49 HD 152249 s*b 16 54 11.6395658856 -41 50 57.295111524 5.91 6.65 6.45     OC9Iab 239 0
50 HD 169582 s*b 18 25 43.1466928224 -09 45 11.033442216 8.74 9.24 8.70     O6Iaf 89 0
51 HD 191612 SB* 20 09 28.6105997664 +35 44 01.286453904 7.40 8.07 7.80     O8fpe 239 0
52 HD 207198 Y*? 21 44 53.2791389640 +62 27 38.048647248 5.61 6.25 5.94 5.66 5.49 O8.5II 347 0
53 * 19 Cep * 22 05 08.7897533088 +62 16 47.332569936 4.36 5.19 5.11 4.95 4.92 O9Ib 380 0

To bookmark this query, right click on this link: simbad:objects in 2018A&A...613A..12M and select 'bookmark this link' or equivalent in the popup menu