SIMBAD references

2018A&A...613A..60R - Astronomy and Astrophysics, volume 613A, 60-60 (2018/5-1)

Magnetic field topology of the cool, active, short-period binary system σ2 Coronae Borealis.

ROSEN L., KOCHUKHOV O., ALECIAN E., NEINER C., MORIN J., WADE G.A. (The BinaMIcS Collaboration)

Abstract (from CDS):

Aims. The goal of this work is to study the cool, active binary star σ2 CrB, focussing on its magnetic field. The two F9-G0 components of this system are tidally locked and in a close orbit, increasing the chance of interaction between their magnetospheres. Methods. We used Stokes IV data from the twin spectropolarimeters Narval at the TBL and ESPaDOnS at the CFHT. The least-squares deconvolution multi-line technique was used to increase the signal-to-noise ratio of the data. We then applied a new binary Zeeman-Doppler imaging code to reconstruct simultaneously the magnetic topology and brightness distribution of both components of σ2 CrB. This analysis was carried out for two observational epochs in 2014 and 2017. Results. A previously unconfirmed magnetic field of the primary star has been securely detected. At the same time, the polarisation signatures of the secondary appear to have a systematically larger amplitude than that of the primary. This corresponds to a stronger magnetic field, for which the magnetic energy of the secondary exceeds that of the primary by a factor of 3.3-5.7. While the magnetic energy is similar for the secondary star in the two epochs, the magnetic energy is about twice as high in 2017 for the primary. The magnetic field topology of the two stars in the earlier epoch (2014) is very different. The fractions of energy in the dipole and quadrupole components of the secondary are similar and thereafter decrease with increasing harmonic angular degree l. At the same time, for the primary the fraction of energy in the dipole component is low and the maximum energy contribution comes from l=4. However, in the 2017 epoch both stars have similar field topologies and a systematically decreasing energy with increasing l. In the earlier epoch, the magnetic field at the visible pole appears to be of opposite polarity for the primary and secondary, suggesting linked magnetospheres. The apparent rotational periods of both σ2 CrB components are longer than the orbital period, which we interpret as an evidence of a solar-like differential rotation. Conclusions. Despite their nearly identical fundamental parameters, the components of σ2 CrB system exhibit different magnetic field properties. This indicates that the magnetic dynamo process is a very sensitive function of stellar parameters.

Abstract Copyright: © ESO 2018

Journal keyword(s): polarization - stars: activity - stars: magnetic field - stars: late-type - stars: individual: sigma2 CrB

Simbad objects: 5

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2018A&A...613A..60R and select 'bookmark this link' or equivalent in the popup menu