2018A&A...618A..16H


Query : 2018A&A...618A..16H

2018A&A...618A..16H - Astronomy and Astrophysics, volume 618A, 16-16 (2018/1-0)

3D non-LTE corrections for Li abundance and 6Li/7Li isotopic ratio in solar-type stars. I. Application to HD 207129 and HD 95456.

HARUTYUNYAN G., STEFFEN M., MOTT A., CAFFAU E., ISRAELIAN G., GONZALEZ HERNANDEZ J.I. and STRASSMEIER K.G.

Abstract (from CDS):

Context. Convective motions in solar-type stellar atmospheres induce Doppler shifts that affect the strengths and shapes of spectral absorption lines and create slightly asymmetric line profiles. One-dimensional (1D) local thermodynamic equilibrium (LTE) studies of elemental abundances are not able to reproduce this phenomenon, which becomes particularly important when modeling the impact of isotopic fine structure, like the subtle depression created by the 6Li isotope on the red wing of the LiI resonance doublet line.
Aims. The purpose of this work is to provide corrections for the lithium abundance, A(Li), and the 6Li/7Li isotopic ratio that can easily be applied to correct 1D LTE lithium abundances in G and F dwarf stars of approximately solar mass and metallicity for three-dimensional (3D) and non-LTE (NLTE) effects.
Methods. The corrections for A(Li) and 6Li/7Li are computed using grids of 3D NLTE and 1D LTE synthetic lithium line profiles, generated from 3D hydro-dynamical CO5BOLD and 1D hydrostatic model atmospheres, respectively. For comparative purposes, all calculations are performed for three different line lists representing the LiIλ670.8 nm spectral region. The 3D NLTE corrections are then approximated by analytical expressions as a function of the stellar parameters (Teff, logg, [Fe/H], νsini, A(Li), 6Li/7Li). These are applied to adjust the 1D LTE isotopic lithium abundances in two solar-type stars, HD 207129 and HD 95456, for which high-quality HARPS observations are available.
Results. The derived 3D NLTE corrections range between -0.01 and +0.11dex for A(Li), and between -4.9 and -0.4% for 6Li/7Li, depending on the adopted stellar parameters. We confirm that the inferred 6Li abundance depends critically on the strength of the SiI 670.8025nm line. Our findings show a general consistency with recent works on lithium abundance corrections. After the application of such corrections, we do not find a significant amount of 6Li in any of the two target stars.
Conclusions.In the case of 6Li/7Li, our corrections are always negative, showing that 1D LTE analysis can significantly overestimate the presence of 6Li (up to 4.9% points) in the atmospheres of solar-like dwarf stars. These results emphasize the importance of reliable 3D model atmospheres combined with NLTE line formation for deriving precise isotopic lithium abundances. Although 3D NLTE spectral synthesis implies an extensive computational effort, the results can be made accessible with parametric tools like the ones presented in this work.

Abstract Copyright: © ESO 2018

Journal keyword(s): stars: abundances - stars: atmospheres - radiative transfer - line: formation - line: profiles

VizieR on-line data: <Available at CDS (J/A+A/618/A16): table.dat>

Simbad objects: 4

goto Full paper

goto View the references in ADS

Number of rows : 4
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 HD 82943 PM* 09 34 50.7353072232 -12 07 46.369202196   7.17 6.53     F9VFe+0.5 470 2
2 HD 95456 PM* 11 00 40.7833715376 -31 50 21.732234036   6.575 6.051     F8V 88 0
3 V* CZ CVn SB* 14 06 26.1538195536 +30 50 47.322949236   8.64 7.62     K0 48 0
4 HD 207129 PM* 21 48 15.7511634187 -47 18 13.017893348   6.18 5.58     G2V 328 0

To bookmark this query, right click on this link: simbad:objects in 2018A&A...618A..16H and select 'bookmark this link' or equivalent in the popup menu